Utilization of Satellite-based Digital Elevation Model (DEM) for Hydrologic Applications: A Review

Abstract

Digital elevation model (DEM) derived conventionally from topographic maps and space borne satellites will provide various evidences about the change in earth features. It is one of the most fundamental data source of topographical relief information and delineate watershed boundaries which is being widely applied in numerous hydrological studies. A significant amount of work has been done to address the limitation and uncertainties of DEM. This review article aimed to bring all-inclusive considerations of DEM, i.e., derivative DEM sensors, types, accessibility, cost, horizontal & vertical accuracy and cell resolution. Based on evaluation this study would offer a good assistance to the research community and users for the implication of DEM services in appropriate hydrological models to avoid the ambiguities of modeling.

This is a preview of subscription content, log in to check access.

References

  1. Aber, James S, Susan W Aber, and Firooza Pavri. (2002) Unmanned Small Format Aerial Photography from Kites Acquiring Large-Scale, High-Resolution, Multiview-Angle Imagery. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, v.34, (1), pp.1–6.

    Google Scholar 

  2. Adams, James, and Jim Chandler (2002) Evaluation of Lidar and Medium Scale Photogrammetry for Detecting Soft Cliff Coastal Change. The Photogrammetric Record, v.17(99), pp.405–18.

    Article  Google Scholar 

  3. Aggarwal, Shefali (2003) Principles of Remote Sensing. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 23p.

    Google Scholar 

  4. Ajayi, Oluibukun Gbenga, Akporode Anthony Salubi, Alu Fredrick Angbas, and Mukwedeh Godfrey Odigure (2017) Generation of Accurate Digital Elevation Models from Uav Acquired Low Percentage Overlapping Images. Internat. Jour. Remote Sensing, v.38(8-10), pp.3113–34.

    Article  Google Scholar 

  5. Akbari, Abolghasem, Noram Irwin Bin Ramli, and Ngien Su Kong (2016) Application of Public Domain Satellite-Based Dems in Natural Hazard Modeling. Internat. Jour. Environ. Sci. Develop., v.7(2), pp.140.

    Article  Google Scholar 

  6. Alemseged, T.H., and Rientjes, T.H.M. (2007) Uncertainty Issues in Hydrodynamic Flood Modeling. Paper presented at the Proceedings of the 5th international symposium on spatial data quality SDQ.

    Google Scholar 

  7. Alfieri, Lorenzo, Peter Salamon, Alessandra Bianchi, Jeffrey Neal, Paul Bates, and Luc Feyen (2014) Advances in Pan European Flood Hazard Mapping. Hydrological Processes, v.28(13), pp.4067–4077.

    Article  Google Scholar 

  8. Alsdorf, Douglas E., Ernesto Rodríguez, and Dennis P. Lettenmaier (2007) Measuring Surface Water from Space. Rev. Geophys., v.45(2).

    Google Scholar 

  9. Aryal, Arjun, Benjamin A Brooks, Mark E Reid, Gerald W Bawden and Geno R Pawlak (2012) Displacement Fields from Point Cloud Data: Application of Particle Imaging Velocimetry to Landslide Geodesy. Jour. Geophys. Res., Earth Surface, v.117, no.F1.

  10. Baltensweiler, Andri, Lorenz Walthert, Christian Ginzler, Flurin Sutter, Ross S Purves, and Marc Hanewinkel (2017) Terrestrial Laser Scanning Improves Digital Elevation Models and Topsoil Ph Modelling in Regions with Complex Topography and Dense Vegetation. Environmental Modelling & Software, v.95, pp.13–21.

    Article  Google Scholar 

  11. Bates, Paul D. (2004) Remote Sensing and Flood Inundation Modelling. Hydrological Processes, v.18(13), pp.2593–2597.

    Article  Google Scholar 

  12. Baugh, Calum, A., Paul D. Bates, Guy Schumann, and Mark A. Trigg (2013) SRTM Vegetation Removal and Hydrodynamic Modeling Accuracy. Water Resour. Res., v.49(9), pp.5276–5289.

    Article  Google Scholar 

  13. Bitelli, Gabriele, Marco Dubbini, and Antonio Zanutta (2004) Terrestrial Laser Scanning and Digital Photogrammetry Techniques to Monitor Landslide Bodies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, v.35(B5), pp.246–251.

    Google Scholar 

  14. Blumberg, D., Bach, D., Weissel, J., Gorokhovich, Y., Small, C. and Balk, D. (2005) The 2004 Sumatra Tsunami Event: Contribution of Srtm Data to the Analysis of Devastation. Paper presented at the The Shuttle Radar Topography Mission—Data Validation and Applications, Workshop, June 14–16, 2005, Reston, Virginia.

    Google Scholar 

  15. Bowen, Zachary, H., and Robert G. Waltermire (2002) Evaluation of Light Detection and Ranging (LiDAR) for Measuring River Corridor Topography. Wiley Online Library, v.38, pp.31–44.

    Google Scholar 

  16. Brasington, J., Vericat, D. and Rychkov, I. (2012) Modeling River Bed Morphology, Roughness, and Surface Sedimentology Using High Resolution Terrestrial Laser Scanning. Water Resour. Res., v.48(11).

    Google Scholar 

  17. Brivio, P.A., Colombo, R., Maggi, M. and Tomasoni, R. (2002) Integration of Remote Sensing Data and Gis for Accurate Mapping of Flooded Areas. Internat. Jour. Remote Sensing, v.23(3), pp.429–241.

    Article  Google Scholar 

  18. Costabile, Pierfranco, Francesco Macchione, Luigi Natale, and Gabriella Petaccia (2015) Flood Mapping Using Lidar Dem. Limitations of the 1-D Modeling Highlighted by the 2-D Approach. Natural Hazards, v.77(1), pp.181.

    Google Scholar 

  19. Covello, F., Battazza, F., Coletta, A., Lopinto, E., Fiorentino, C., Pietranera, L., Valentini, G. and Zoffoli, S. (2010) Cosmo-Skymed an Existing Opportunity for Observing the Earth. Jour. Geodynamics, v.49(3), pp.171–180.

    Article  Google Scholar 

  20. Crosby, Christopher, Ben Lowry, Jeff McWhirter, David Phillips, and Chuck Meertens (2013) Development of an Online Archive for Terrestrial Laser Scanning Data. Paper presented at the EGU General Assembly Conference Abstracts, v.15, 13334p.

    Google Scholar 

  21. Danielson, Jeffrey J., and Dean B. Gesch (2011) Global Multi-Resolution Terrain Elevation Data 2010 (Gmted2010)-Of2011-1073. Pdf. Open-File Report, no.2011–1073.

    Google Scholar 

  22. De Vente, Joris, Jean Poesen, Gerard Govers, and Carolina Boix Fayos (2009) The Implications of Data Selection for Regional Erosion and Sediment Yield Modelling. Earth Surface Processes and Landforms, v.34(15), pp.1994–2007.

    Article  Google Scholar 

  23. Di Baldassarre Giuliano, Guy Schumann, and Paul Bates (2009) Near Real Time Satellite Imagery to Support and Verify Timely Flood Modelling. Hydrological Processes, v.23(5), pp.799–803.

    Article  Google Scholar 

  24. Dong Yusen, Hsing-Chung Chang, Weitao Chen, Kui Zhang, and Ruili Feng (2014) Accuracy Assessment of Gdem, Srtm, and Dlr-Srtm in Northeastern China. Geocarto Internat., v.30, pp.779–792.

    Article  Google Scholar 

  25. Drake, Jason B., Ralph O. Dubayah, Robert G. Knox, David B. Clark and Bryan Blair, J. (2002) Sensitivity of Large-Footprint Lidar to Canopy Structure and Biomass in a Neotropical Rainforest. Remote Sensing of Environment, v.81(2), pp.378–392.

    Article  Google Scholar 

  26. Dubayah Ralph O., and Jason B. Drake (2000) Lidar Remote Sensing for Forestry. Jour. Forestry, v.98(6), pp.44–46.

    Google Scholar 

  27. Eckert, S., Kellenberger, T. and Itten, K. (2005) Accuracy Assessment of Automatically Derived Digital Elevation Models from Aster Data in Mountainous Terrain. Internat. Jour. Remote Sensing, v.26(9), pp.1943–1957.

    Article  Google Scholar 

  28. Eitel Jan U.H., Lee A. Vierling, and Dan S. Long (2010) Simultaneous Measurements of Plant Structure and Chlorophyll Content in Broadleaf Saplings with a Terrestrial Laser Scanner. Remote Sensing of Environment, v.114(10), pp.2229–2237.

    Article  Google Scholar 

  29. Falorni Giacomo, Vanessa Teles, Enrique R. Vivoni, Rafael L. Bras, and Kevin S. Amaratunga (2005) Analysis and Characterization of the Vertical Accuracy of Digital Elevation Models from the Shuttle Radar Topography Mission. Jour. Geophys. Res.: Earth Surface, v.110, no.F2.

  30. Falorni, G., Teles, V., Vivoni, E.R., Bras, R.L. and Amaratunga, K.S. (2005b) Analysis and Characterization of the Vertical Accuracy of Digital Elevation Models from the Shuttle Radar Topography Mission. Jour. Geophys. Res., Earth Surface (2003–2012) v.110, no. F2.

  31. Farr, T.G. and Kobrick, M. (2001) The Shuttle Radar Topography Mission. Paper presented at the AGU Spring Meeting Abstracts..

    Google Scholar 

  32. Froidevaux, Martin, Chad W Higgins, Valentin Simeonov, Pablo Ristori, Eric Pardyjak, Ilya Serikov, Ronald Calhoun, Hubert Van Den Bergh, and Marc B Parlange. (2013) A Raman Lidar to Measure Water Vapor in the Atmospheric Boundary Layer. Advances in Water Resources, v.51, pp.345–56.

    Article  Google Scholar 

  33. Gallant John C., and Trevor.I Dowling (2003) A Multiresolution Index of Valley Bottom Flatness for Mapping Depositional Areas. Water Resour. Res., v.39(12)

    Google Scholar 

  34. Gallay, Michal, Christopher D, Lloyd, Jennifer McKinley and Lorraine Barry. (2013) Assessing Modern Ground Survey Methods and Airborne Laser Scanning for Digital Terrain Modelling: A Case Study from the Lake District, England. Computers & Geosciences, v.51, pp.216–27.

    Article  Google Scholar 

  35. Gesch, Dean, Gayla Evans, James Mauck, John Hutchinson, and William J. Carswell Jr. (2009) The National Map: Elevation. USGS Fact Sheet 3053, no.4.

    Google Scholar 

  36. Gichamo Tseganeh Z., Ioana Popescu, Andreja Jonoski, and Solomatine, D. (2012) River Cross-Section Extraction from the Aster Global Dem for Flood Modeling. Environmental Modelling & Software, v.31, pp.37–46.

    Article  Google Scholar 

  37. Goncalves, J.A. and Oliveira, A.M. (2004) Accuracy Analysis of Dems Derived from Aster Imagery. International Archives of Photogrammetry and Remote Sensing, v.35, pp.168–72.

    Google Scholar 

  38. Guth, P. (2003) Geomorphology of Dems: Quality Assessment and Scale Effects. Paper No. 175–2. Paper presented at the Proceedings of GSA, Seattle Annual Meeting, November 2.

    Google Scholar 

  39. Hetherington David (2010) Topographic Laser Ranging and Scanning: Principles and Processing, In: J. Shan and Ck Toth, (Eds.), Taylor and Francis, Boca Raton, USA, pp.xi+574p.

    Google Scholar 

  40. Hodgson Michael E., and Patrick Bresnahan ((2004) Accuracy of Airborne Lidar-Derived Elevation. Photogrammetric Engineering & Remote Sensing v.70(3), pp.331–339.

    Google Scholar 

  41. Hodgson, Michael E., John R. Jensen, Laura Schmidt, Steve Schill and Bruce Davis (2003) An Evaluation of Lidar-and Ifsar-Derived Digital Elevation Models in Leaf-on Conditions with USGS Level 1 and Level 2 DEMS. Remote Sensing of Environment, v.84(2), pp.295–308.

    Article  Google Scholar 

  42. Huang Chengquan, Yi Peng, Megan Lang, In-Young Yeo and Greg McCarty (2014) Wetland Inundation Mapping and Change Monitoring Using Landsat and Airborne Lidar Data. Remote Sensing of Environment, v.141, pp.231–242.

    Article  Google Scholar 

  43. Hutchinson, M.F. and Dowling, T.I. (1991) A Continental Hydrological Assessment of a New Grid Based Digital Elevation Model of Australia. Hydrological Processes, v.5(1), pp.45–58.

    Article  Google Scholar 

  44. Iervolino, Pasquale, Raffaella Guida, Antonio Iodice, and Daniele Riccio. (2015) Flooding Water Depth Estimation with High-Resolution SAR. v.53(5), pp.2295–2307.

    Google Scholar 

  45. Jarihani Abdollah A., John N. Callow, Tim R. McVicar, Thomas G. Van Niel, and Joshua R. Larsen (2015) Satellite-Derived Digital Elevation Model (DEM) Selection, Preparation and Correction for Hydrodynamic Modelling in Large, Low-Gradient and Data-Sparse Catchments. Jour. Hydrol., v.524, pp.489–506.

    Article  Google Scholar 

  46. Jenson Susan K. (1991) Applications of Hydrologic Information Automatically Extracted from Digital Elevation Models. Hydrological Processes, v.5(1), pp.31–44.

    Article  Google Scholar 

  47. Jung, Hahn Chul, Michael Jasinski, Jin Woo Kim, Shum, C.K., Paul Bates, Jeffrey Neal, Hyongki Lee, and Doug Alsdorf (2012) Calibration of Two Dimensional Floodplain Modeling in the Central Atchafalaya Basin Floodway System Using Sar Interferometry. Water Resourc. Res., v.48(7).

    Google Scholar 

  48. Kääb, A. (2005) Combination of Srtm3 and Repeat Aster Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya. Remote Sensing of Environment, v.94(4), pp.463–474.

    Article  Google Scholar 

  49. Kamp Ulrich, Tobias Bolch, and Jeffrey Olsenholler (2003) DEM Generation from Aster Satellite Data for Geomorphometric Analysis of Cerro Sillajhuay, Chile/Bolivia. Paper presented at the ASPRS 2003 Annual Conference Proceedings, Anchorage, Alaska

    Google Scholar 

  50. Kellndorfer, Josef, Wayne Walker, Leland Pierce, Craig Dobson, Jo Ann Fites, Carolyn Hunsaker, John Vona, and Michael Clutter (2004) Vegetation Height Estimation from Shuttle Radar Topography Mission and National Elevation Datasets. Remote Sensing of Environment, v.93(3), pp.339–358.

    Article  Google Scholar 

  51. Kervyn, M., Goossens, R., Jacobs, P. and Ernst, G.G.J. (2006) Aster Dems for Volcano Topographic Mapping: Accuracy and Limitations. Paper presented at the Proceedings of International Association for Mathematical Geology XIth International Congress, Université de Liège, Belgium.

    Google Scholar 

  52. Kwak Youngjoo, Jonggeol Park and Kazuhiko Fukami (2014) Estimating Floodwater from Modis Time Series and Srtm Dem Data. Artificial Life and Robotics, v.19(1), pp.95–102.

    Article  Google Scholar 

  53. LeFavour Gina, and Doug Alsdorf (2005) Water Slope and Discharge in the Amazon River Estimated Using the Shuttle Radar Topography Mission Digital Elevation Model. Geophys. Res. Lett., v.32(17).

    Google Scholar 

  54. Li Jing, and David W.S. Wong (2010) Effects of Dem Sources on Hydrologic Applications. Computers, Environment and Urban Systems, v.34(3), pp.251–261.

    Article  Google Scholar 

  55. Lillesand Thomas, Ralph W Kiefer, and Jonathan Chipman (2014) Remote Sensing and Image Interpretation. John Wiley & Sons, Ludwig, Ralf, and Philipp

    Google Scholar 

  56. Schneider (2006) Validation of Digital Elevation Models from Srtm X-Sar for Applications in Hydrologic Modeling. ISPRS Jour. Photogrammetry and Remote Sensing, v.60(5), pp.339–358.

    Article  Google Scholar 

  57. MacIntosh, H., and Profeti, G. (1995) The Use of Ers Sar Data to Manage Flood Emergencies at the Smaller Scale, Paper Presented at 2nd ERS Applications Workshop, European Space Agency, London.

    Google Scholar 

  58. Manavalan, Saimana, Rao, Y.S., Krishna Mohan, Subrata Chattopadhyay, Mangala, N. and Sarat Chandrababu (2014) Analysing the Need and Effect of Speckle Filtering in Sar Image Based Flood Application Models. Paper presented at the EUSAR 2014; Proceedings of 10th European Conference on Synthetic Aperture Radar.

    Google Scholar 

  59. Martinis Sandro, André Twele, and Stefan Voigt (2009) Towards Operational near Real-Time Flood Detection Using a Split-Based Automatic Thresholding Procedure on High Resolution Terrasar-X Data. Natural Hazards and Earth System Science, v.9(2), pp.303–314.

    Article  Google Scholar 

  60. Mason David C, Matthew S Horritt, Neil M Hunter, and Paul D Bates (2007) Use of Fused Airborne Scanning Laser Altimetry and Digital Map Data for Urban Flood Modelling. Hydrological Processes, v.21(11), pp.1436–1447.

    Article  Google Scholar 

  61. Mason, D.C., Schumann, G,J-P., Neal, J.C., Garcia-Pintado, J. and Bates, P.D. (2012) Automatic near Real-Time Selection of Flood Water Levels from High Resolution Synthetic Aperture Radar Images for Assimilation into Hydraulic Models: A Case Study. Remote Sensing of Environment, v.124 pp.705–716.

    Google Scholar 

  62. Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L. and Savenije. H.H.G. (2011) Towards an Automated Sar-Based Flood Monitoring System: Lessons Learned from Two Case Studies. Physics and Chemistry of the Earth, Parts A/B/C, v.36(7), pp.241–252.

    Article  Google Scholar 

  63. Melesse Assefa M., Qihao Weng, Prasad S. Thenkabail, and Gabriel B. Senay (2007) Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors, v.7(12), pp.3209–3941.

    Article  Google Scholar 

  64. Moradi Ayoub, Laurent Metivier, Olivier de Viron, Stephane Calmant, and Catherine Mering (2014) Evaluation of Modis Data for Improved Monitoring of the Caspian Sea. International Journal of Remote Sensing v.35(16), pp.6060–6075.

    Google Scholar 

  65. Muhadi, N.A., Abdullah, A.F. and Kassim, M.S.M. (2016) Quantification of Terrestrial Laser Scanner (TLS) Elevation Accuracy in Oil Palm Plantation for Ifsar Improvement. Paper presented at the IOP Conference Series: Earth and Environmental Science.

    Google Scholar 

  66. Mukherjee Sandip, Joshi, P.K. Samadrita Mukherjee, Aniruddha Ghosh, Garg, R.D. and Anirban Mukhopadhyay (2013) Evaluation of Vertical Accuracy of Open Source Digital Elevation Model (DEM). Internat. Jour. Appld. Earth Observation and Geoinformation, v.21, pp.205–217.

    Article  Google Scholar 

  67. Nardi Fernando, Enrique R Vivoni, and Salvatore Grimaldi (2006) Investigating a Floodplain Scaling Relation Using a Hydrogeomorphic Delineation Method. Water Resour. Res., v.42(9).

    Google Scholar 

  68. Neal, Jeffrey, Ignacio Villanueva, Nigel Wright, Thomas Willis, Timothy Fewtrell, and Paul Bates (2012) How Much Physical Complexity Is Needed to Model Flood Inundation? Hydrological Processes, v.26(15), pp.2264–2282.

    Article  Google Scholar 

  69. Nelson, A., Reuter, H.I. and Gessler, P. (2009) DEM Production Methods and Sources. Developments in Soil Science, v.33, pp.65–85.

    Article  Google Scholar 

  70. Osborn, K, J List D Gesch, J Crowe, G Merrill, E Constance, J Mauck, et al. (2001) National Digital Elevation Program (Ndep) Digital elevation model technologies and applications: The DEM users manual, pp.83–120.

    Google Scholar 

  71. Paiva Rodrigo C.D., Walter Collischonn, and Carlos E.M. Tucci (2011) Large Scale Hydrologic and Hydrodynamic Modeling Using Limited Data and a Gis Based Approach. Jour. Hydrol., v.406(3), pp.170–181.

    Article  Google Scholar 

  72. Patino Jorge E., and Juan C. Duque (2013) A Review of Regional Science Applications of Satellite Remote Sensing in Urban Settings. Computers, Environment and Urban Systems, v.37, pp.1–17.

    Article  Google Scholar 

  73. Patro, Shivananda, Chandranath Chatterjee, Rajendra Singh, and Narendra Singh Raghuwanshi (2009) Hydrodynamic Modelling of a Large Flood Prone River System in India with Limited Data. Hydrological Processes v.23(19), pp.2774–2791.

    Google Scholar 

  74. Pinheiro, A.C.T., Descloitres, J., Privette, J.L., Susskind, J., Iredell, L. and Schmaltz, J. (2007) Near-Real Time Retrievals of Land Surface Temperature within the Modis Rapid Response System. Remote Sensing of Environment, v.106(3), pp.326–336.

    Article  Google Scholar 

  75. Pryde, J.K., Osorio, J., Wolfe, M.L., Heatwole, C., Benham, B., and Cardenas, A. (2007) Comparison of Watershed Boundaries Derived from Srtm and Aster Digital Elevation Datasets and from a Digitized Topographic Map.” Paper presented at the 2007 ASABE Annual International Meeting. Minneapolis Convention Center, Minneapolis, Minnesota, US: American Society of Agricultural and Biological Engineers (ASABE).

    Google Scholar 

  76. Pulvirenti, L., Pierdicca, N., Chini, M. and Guerriero, L. (2011) An Algorithm for Operational Flood Mapping from Synthetic Aperture Radar (SAR) Data Based on the Fuzzy Logic. Natural Hazard and Earth System Sciences, v.11, pp.529–540.

    Article  Google Scholar 

  77. Quadros, N.D., Collier, P.A. and Fraser, C.S. (2008) Integration of Bathymetric and Topographic Lidar: A Preliminary Investigation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v.36, pp.1299–1304.

    Google Scholar 

  78. Ravibabu Mandla, V., and Kamal Jain (2008) Digital Elevation Model Accuracy Aspects. Jour. Appld. Sci., v.8(1), pp.134–139.

    Article  Google Scholar 

  79. Rodriguez Ernesto, Charles S. Morris and Eric Belz, J. (2006) A Global Assessment of the Srtm Performance. Photogrammetric Engineering & Remote Sensing, v.72(3), pp.249–260.

    Article  Google Scholar 

  80. Rodriguez, Ernesto, Morris, C.S., Belz, J.E., Chapin, E.C., Martin, J.M., Daffer, W. and Hensley, S. (2005) An Assessment of the SRTM Topographic Products. Photogrammatic Engg. and, Remote Sens., v.53, pp.249–260.

    Google Scholar 

  81. Sakamoto, Toshihiro, Nhan Van Nguyen, Akihiko Kotera, Hiroyuki Ohno, Naoki Ishitsuka, and Masayuki Yokozawa (2007) Detecting Temporal Changes in the Extent of Annual Flooding within the Cambodia and the Vietnamese Mekong Delta from Modis Time-Series Imagery. Remote Sensing of Environment, v.109(3), pp.295–313.

    Article  Google Scholar 

  82. Saksena Siddharth, and Venkatesh Merwade (2015) Incorporating the Effect of DEM Resolution and Accuracy for Improved Flood Inundation Mapping. Jour. Hydrol., v.530, pp.180–94.

    Article  Google Scholar 

  83. Sanders Brett, F. (2007) Evaluation of on-Line Dems for Flood Inundation Modeling. Advances in Water Resources, v.30(8), pp.1831–1843.

    Article  Google Scholar 

  84. Sanyal Joy, Patrice Carbonneau, and Alexander L. Densmore (2014) Low-Cost Inundation Modelling at the Reach Scale with Sparse Data in the Lower Damodar River Basin, India. Hydrol. Sci. Jour., v.59(12), pp.2086–2102.

    Article  Google Scholar 

  85. Sanyal, Joy, and Lu, XX (2004) Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards, v.33(2), 283–301.

    Google Scholar 

  86. Schmidt, Kevin M., Hanshaw, M.N., James F. Howle, Jason W. Kean, Dennis M. Staley, Jonathan D. Stock, and Gerald W. Bawden (2011) Hydrologic Conditions and Terrestrial Laser Scanning of Post-Fire Debris Flows in the San Gabriel Mountains, Ca, USA. Paper presented at the Proceedings of the fifth international conference on debris flow hazards mitigation/mechanics, prediction, and assessment, Padua, Italy.

    Google Scholar 

  87. Schumann, G., Di Baldassarre, G., Alsdorf, D. and Bates, P.D. (2010) Near Real Time Flood Wave Approximation on Large Rivers from Space: Application to the River Po, Italy. Water Resour. Res., v.46(5).

    Google Scholar 

  88. Schumann, Guy, Paul D. Bates, Matthew S. Horritt, Patrick Matgen, and Florian Pappenberger (2009) Progress in Integration of Remote Sensing–Derived Flood Extent and Stage Data and Hydraulic Models. Rev. Geophys., v.47, no.4.

  89. Schumann, Guy, Patrick Matgen, Cutler, M.E.J., Andrew Black, Lucien Hoffmann, and Laurent Pfister (2008) Comparison of Remotely Sensed Water Stages from Lidar, Topographic Contours and Srtm. ISPRS Journal of Photogrammetry and Remote Sensing, v.63(3), pp.283–296.

    Article  Google Scholar 

  90. Smith Martin, J., Earl P. Edwards, Gary Priestnall, and Bates, P.D. (2006) Exploitation of New Data Types to Create Digital Surface Models for Flood Inundation Modeling. FRMRC Research Rep. No. UR3.

    Google Scholar 

  91. Szypula, Bartlomiej (2017) Digital Elevation Models in Geomorphology. In: Hydro-Geomorphology-Models and Trends: InTech.

    Google Scholar 

  92. Tarekegn, Tesfaye Haimanot, Alemseged Tamiru Haile, Tom Rientjes, Reggiani, P. and Dinand Alkema (2010) Assessment of an Aster-Generated Dem for 2d Hydrodynamic Flood Modeling. Internat. Jour. Appld. Earth Observation and Geoinformation, v.12(6), pp.457–465.

    Article  Google Scholar 

  93. Thomas, Jobin, Sabu Joseph, Thrivikramji, K.P. and Arunkumar, K.S. (2014) Sensitivity of Digital Elevation Models: The Scenario from Two Tropical Mountain River Basins of the Western Ghats, India. Geoscience Frontiers v.5(6), pp.893–909.

    Google Scholar 

  94. Thomas, Jobin, Prasannakumar, V. and Vineetha, P. (2015) Suitability of Spaceborne Digital Elevation Models of Different Scales in Topographic Analysis: An Example from Kerala, India. Environ. Earth Sci., v.73(3), pp.1245–1263.

    Article  Google Scholar 

  95. Ticehurst, C.J., Dyce, P. and Guerschman, J.P. (2009) Using Passive Microwave and Optical Remote Sensing to Monitor Flood Inundation in Support of Hydrologic Modelling. Paper presented at the Interfacing modelling and simulation with mathematical and computational sciences, 18th World IMACS/MODSIM Congress.

    Google Scholar 

  96. Toz, G., and Erdogan, M. (2008) Dem (Digital Elevation Model) Production and Accuracy Modeling of Dems from 1:35.000 Scale Aerial Photographs. Paper presented at the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress.

    Google Scholar 

  97. Tsubaki, Ryota, and Yoshihisa Kawahara (2013) The Uncertainty of Local Flow Parameters During Inundation Flow over Complex Topographies with Elevation Errors. Jour. Hydrology, v.486, pp.71–87.

    Article  Google Scholar 

  98. Vaze, Jai, Jin Teng, and Georgina Spencer. (2010) Impact of Dem Accuracy and Resolution on Topographic Indices. Environmental Modelling & Software, v.25(10), pp.1086–1098.

    Article  Google Scholar 

  99. Wang, Menghua, Wei Shi, and Junwu Tang (2011) Water Property Monitoring and Assessment for China’s Inland Lake Taihu from Modis-Aqua Measurements. Remote Sensing of Environment, v.115(3), pp.841–854.

    Article  Google Scholar 

  100. Wang, Menghua, Seung Hyun Son, and Wei Shi (2009) Evaluation of Modis Swir and Nir-Swir Atmospheric Correction Algorithms Using Seabass Data. Remote Sensing of Environment, v.113(3), pp.635–644.

    Article  Google Scholar 

  101. Wang, Weicai, Xiaoxin Yang, and Tandong Yao (2012) Evaluation of Aster Gdem and Srtm and Their Suitability in Hydraulic Modelling of a Glacial Lake Outburst Flood in Southeast Tibet. Hydrological Processes, v.26(2), pp.213–225.

    Article  Google Scholar 

  102. Wang, Weicai, Tandong Yao, Wei Yang, Daniel Joswiak and Meilin Zhu (2012) Methods for Assessing Regional Glacial Lake Variation and Hazard in the Southeastern Tibetan Plateau: A Case Study from the Boshula Mountain Range, China. Environ. Earth Sci., v.67(5), pp.1441–1450.

    Article  Google Scholar 

  103. Wechsler, SP. (2007) Uncertainties Associated with Digital Elevation Models for Hydrologic Applications: A Review. Hydrology and Earth System Sciences, v.11(4), pp.1481–1500.

    Article  Google Scholar 

  104. Wechsler, Suzanne P. (2003) Perceptions of Digital Elevation Model Uncertainty by DEM Users. URISA-WASHINGTON DC-15, no.2, pp.57–64.

    Google Scholar 

  105. Williams, Wendy A., Mark E. Jensen, J. Chris Winne, and Roland L. Redmond. (2000) An Automated Technique for Delineating and Characterizing Valley-Bottom Settings. Environmental Monitoring and Assessment, v.64(1), pp.105–114.

    Article  Google Scholar 

  106. Wise, S.M. (2007) Effect of Differing Dem Creation Methods on the Results from a Hydrological Model. Computers & Geosciences, v.33(10), pp.1351–1365.

    Article  Google Scholar 

  107. Wolock, David M., and Gregory J. McCabe (2000) Differences in Topographic Characteristics Computed from 100-and 1000-M Resolution Digital Elevation Model Data. Hydrological Processes, v.14(6), pp.987–1002.

    Article  Google Scholar 

  108. Yamazaki, Dai, Calum A Baugh, Paul D Bates, Shinjiro Kanae, Douglas E Alsdorf, and Taikan Oki. (2012) Adjustment of a Spaceborne Dem for Use in Floodplain Hydrodynamic Modeling. Jour. Hydrol., v.436, pp.81–91.

    Article  Google Scholar 

  109. Yan, Kun, Giuliano Di Baldassarre, Dimitri P Solomatine, and Guy J.P. Schumann (2015) A Review of Low Cost Space Borne Data for Flood Modelling: Topography, Flood Extent and Water Level. Hydrological Processes, v.29(15), pp.3368–3387.

    Article  Google Scholar 

  110. Yan, K., Di Baldassarre, G., Solomatine, D.P. and Schumann, G.J.P. (2015b) “A Review of Low Cost Space Borne Data for Flood Modelling: Topography, Flood Extent and Water Level. Hydrological Processes, v.29(15), pp.3368–3382.

    Article  Google Scholar 

  111. Zhang, Jane Xinxin, Kang Tsung Chang, and Joan Qiong Wu (2008) Effects of Dem Resolution and Source on Soil Erosion Modelling: A Case Study Using the Wepp Model. Internat. Jour. Geographical Information Science v.22(8), pp.925–942.

    Google Scholar 

  112. Zwally, H.J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J. et al. (2002) Icesat’s Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land. Jour. Geodynamics, v.34(3), pp.405–445.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Syeda Maria Zaidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaidi, S.M., Akbari, A., Gisen, J.I. et al. Utilization of Satellite-based Digital Elevation Model (DEM) for Hydrologic Applications: A Review. J Geol Soc India 92, 329–336 (2018). https://doi.org/10.1007/s12594-018-1016-5

Download citation