Skip to main content
Log in

Lineament Mapping over Sir Creek Offshore and its Surroundings using High Resolution EGM2008 Gravity Data: An Integrated Derivative Approach

  • Published:
Journal of the Geological Society of India

Abstract

The present study deals with the delineation of lineaments over Sir Creek offshore and its surroundings from EGM2008 gravity data using various derivative techniques owing to their costeffectiveness in prospective hydrocarbon exploration. Initially, 2-D and 3-D synthetic models have been generated with vertical prismatic objects at different depths. The effectiveness of total horizontal derivative (THD) technique has been established by comparing with E-W and N-S Horizontal derivatives and First Vertical derivative techniques. The residuals of Bouguer gravity data have been estimated with different cut-off wavelengths. Further, the residual anomaly map has been enhanced by the derivative techniques for the delineation of the structural features. Possible depths of the delineated lineaments have been estimated using Euler deconvolution of the Bouguer gravity data, which indicates maximum clustering over the delineated lineaments. It is observed that most of the lineaments are in the depth range of 1.0 km to 5.5km, which correlate well with the previous seismic studies. The present study reveals that the major lineament trends in the N-S, E-W and NNW-SSE directions followed by NE-SW, NW-SE and ENE-WSW directions. These major lineament trends are due to the tectonic activities occurred during Precambrian and Cretaceous period. Different small circular features, rectangular features and shorter wavelength features have also been identified, which could be the key parameter for mapping potential location for hydrocarbon exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Fattah, R., Meekes, J. A. C., Colella. S., Bouman, J., Schmidt, M. and Ebbing, J. (2012) The application of GOCE satellite gravity data for basin and petroleum system modeling: a case-study from the Arabian Peninsula. First International GOCE Solid Earth Workshop, University of Twente, Netherland s, 16-17 October 2012, pp. 1–2.

    Google Scholar 

  • Bhattacharya, G.C. and Chaubey, A.K. (2001) Western Indian Ocean: a glimpse of the Tectonic Scenario. In: Sen Gupta, R., Desa, E. (Eds.), The Indian Ocean—a perspective. Oxford & IBH Publishers, New Delhi, pp. 691–729.

  • Bhattacharyya, R., Verma, P.K., and Majumdar, T.J. (2009) High resolution satellite geoids/gravity over the western Indian offshore for tectonics and hydrocarbon exploration. Indian Jour. Mar. Sci. v.38(1), pp.116–125.

    Google Scholar 

  • Bhattacharyya, R. and Majumdar, T.J. (2009) Bathymetry prediction over a part of the Bombay High in the western offshore using very high resolution satellite gravity data. Curr. Sci., v.97(8), pp.1152–1161.

    Google Scholar 

  • Blakely, R.J. (1996) Potential theory in gravity and magnetic application. Cambridge University Press. pp.441.

    Google Scholar 

  • Biswas, S.K. (1982) Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. Amer. Assoc. Petrol. Geol. Bull., v.66, pp.1497–1513.

    Google Scholar 

  • Biswas, S. K. (1988) Structure of the western continental margin of India and related igneous activity. Mem. Geol. Surv. India, v.10, pp.371–390.

    Google Scholar 

  • Biswas, S.K. (1989) Hydrocarbon exploration in western offshore basins of India. Geol. Surv. India Spec. Publ., v.24, pp.185–194.

    Google Scholar 

  • Biswas, S.K. (2001) Structure of the Western Continental Margin of India and related igneous activity. Mem. Geol. Soc. India, no.47, pp.349–364.

    Google Scholar 

  • Bomfim, E.P., Braitenberg, C. and Molina, E.C. (2013) Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys. Jour. Internat. doi: 10.1093/gji/ggt283.

    Google Scholar 

  • Braitenberg, C., Wienecke, S. and Wang, Y. (2006) Basement structures from satellite-derived gravity field: South China Sea ridge. Jour. Geophys. Res., v.111, B05407, doi: 10.1029/2005JB003938.

  • Braitenberg, C. and Ebbing, J. (2009a) New insights into the basement structure of the west-Siberian basin from forward and inverse modelling of GRACE satellite gravity data. Jour. Geophys. Res., 114, Bo6402, doi: 10.1029/2008JB005799.

    Article  Google Scholar 

  • Braitenberg, C. and Ebbing, J. (2009b) The GRACE-satellite gravity and geoid fields in analysing large scale, cratonic or intracratonic basins. Geophys. Prospect. doi:10.1111/j.1365-2478.2009.00793.x.

    Google Scholar 

  • Braitenberg, C., Mariani, P., Ebbing, J. and Sprlak, M. (2011) The enigmatic Chad lineament revisited with global gravity and gravity gradient fields. Geol. Soc. London Spec. Publ., no.357, pp.329–341.

    Article  Google Scholar 

  • Braitenberg, C. (2012) Unmapped geologic macrostructures identified with GOCE. First International GOCE Solid Earth Workshop, University of Twente, Netherland s, 16-17 October, pp.33–34.

    Google Scholar 

  • Chaubey, A.K., Gopala Rao, D., Srinivas, K., Ramprasad, T., Ramana, M.V. and Subrahmanyam, V. (2002) Analyses of multichannel seismic reflection, gravity and magnetic data along a regional profile across the central-western continental margin of India. Mar. Geol., v.182, pp.303–323.

    Article  Google Scholar 

  • Chaubey, A.K., Srinivas, K., Ashalatha, B. and Gopala Rao, D. (2008) Isostatic response of the Laccadive Ridge from admittance analysis of gravity and bathymetry data. Jour. Geodynam., v.46, pp.10–20.

    Article  Google Scholar 

  • Cordell, L. (1979) Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico. Geological Society Guidebook, 30th Field Conference. 59-64.

    Google Scholar 

  • Cordell, L. and Grauch, V.J.S. (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: W.J. Hinze (Ed.), The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists. pp.181–197. Geosoft, Oasis Montaj software 7.0, Geosoft Inc., Copyright 2008.

    Book  Google Scholar 

  • Gopala Rao, D., Paropkari, A.L., Krishna, K.S., Chaubey, A.K., Ajay, K. K. and Kodagali, V. N. (2010) Bathymetric highs in the mid-slope region of the Western Continental Margin of India — structure and mode of origin. Mar. Geol. v.276, pp.58–70.

    Article  Google Scholar 

  • Grauch, V.J.S. and Cordell, L. (1987) Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophys., v.52, pp.118–121.

    Article  Google Scholar 

  • Hood, P.J. and Taskey, D.J. (1989) Aeromagnetic gradiometer program of the Geological Survey of Canada. Geophys., v.54(8), pp.1012–1022.

    Article  Google Scholar 

  • Ma, G. (2013a) Edge detection of potential field data using improved local phase filter. Explor. Geophys., v.44, pp.6–41.

    Article  Google Scholar 

  • Ma, G. (2013b) Combination of horizontal gradient ratio and Euler (HGREUL) methods for the interpretation of potential field data. Geophys., v.78, pp.J53–J60.

    Article  Google Scholar 

  • Ma, G. and Li, L. (2012) Edge detection in potential fields with the normalized total horizontal derivative. Comp & Geosci., v.41, pp.83–87.

    Article  Google Scholar 

  • Ma, G., Liu, C. and Li, L. (2014) Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. Jour. Appld. Geophys., v.108, pp.2–18.

    Google Scholar 

  • Majumdar, T.J., Mohanty, K.K. and Srivastava, A.K. (1998) On the utilization of ERS-1 altimeter data for offshore oil exploration. Internat. Jour. Remote Sens., v.19(10), pp.1953–1968.

    Article  Google Scholar 

  • Majumdar, T.J. and Bhattacharyya, R. (2004) An Atlas of very high resolution satellite geoid/gravity over the Indian offshore. SAC Tech. Note No. SAC/RESIPA/MWRG/ESHD/TR-21/2004, Nov. 2004, SAC, Ahmedabad, 46p.

    Google Scholar 

  • Majumdar, T.J. and Bhattacharyya, R. (2005) Bathymetry prediction model from high-resolution satellite gravity as applied over a part of the eastern Indian offshore. Curr. Sci., v.89(10), pp.1754–1759.

    Google Scholar 

  • Majumdar, T.J. and Bhattacharyya, R. (2011) A comparative evaluation of the gravity signatures over a part of the western Indian offshore for lithospheric studies. Indian Jour. Mar. Sci., v.40(4), pp.491–496.

    Google Scholar 

  • Majumdar, T.J. and Bhattacharyya, R. (2014) High resolution satellite gravity over a part of the Sir Creek offshore on west northwest margin of the Indian subcontinent. Indian Jour. Mar. Sci., v.43(3), pp.337–339.

    Google Scholar 

  • Miles, P.R., Munschy, M. and Segoufin, J. (1998) Structure and early evolution of the Arabian Sea and East Somali Basin. Geophys. Jour. Internat., v.134, pp.876–888.

    Article  Google Scholar 

  • Miller, H.G. and Singh, V. (1994) Potential field tilt a new concept for location of potential field sources. Jour. Appld. Geophys., v.32, pp.213–217.

    Article  Google Scholar 

  • Naini, B.R. and Talwani, M. (1982) Structural framework and the evolutionary history of the continental margin of western India. In: J. S. Watkins, and C. L. Drake (Eds.), Studies in Continental Margin Geology. AAPG Mem., v.34, pp.167–191.

    Google Scholar 

  • Nair, N., Anand, S.P. and Rajaram, M. (2013) Tectonic framework of Laccadive Ridge in Western Continental Margin of India. Mar. Geol. v.346, pp.79–90.

    Article  Google Scholar 

  • Norton, I.O. and Sclater, J.G. (1979) A model for the evolution of the Indian Ocean and the break-up of Gondwanaland. Jour. Geophys. Res., v.84, pp.6803–6830.

    Article  Google Scholar 

  • Pal, S.K., Vaish, J., Kumar, S., Priyam, P., Bharti, A.K. and Kumar, R. (2017) Downward continuation and Tilt Derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. Jour. Earth Syst. Sci., DOI: 10.1007/s12040-017-0826-y

    Google Scholar 

  • Pal, S.K., Majumdar T.J., Pathak, V.K., Satya Narayan, Kumar, U. and Goswami, O.P. (2016a) Utilization of high resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Internat., v.31(7), pp.783–802. DOI:10.1080/10106049.2015. 1076064.

    Article  Google Scholar 

  • Pal, S.K., Satya Narayan, Majumdar T.J. and Kumar U (2016b) Structural mapping over the 85°E ridge and surroundings using EIGEN6C4 High Resolution Global Combined Gravity Field Model: an integrated approach. Mari. Geophys. Res., v.37, pp.159–184. DOI: 10.1007/s11001-016-9274-3.

    Article  Google Scholar 

  • Pal, S.K., Vaish, J., Kumar, S. and Bharti, A.K. (2016c) Coalfire mapping of East Basuria Colliery, Jharia coal field using Vertical Derivative Technique of Magnetic data. Jour. Earth Syst. Sci., v.125(1), pp.165–178.

    Article  Google Scholar 

  • Pal, S.K. and Majumdar, T. J. (2015) Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data. Int. Jour. Appl. Earth Observ. and Geoinfo., v.35, pp.96–119. DOI:10.1016/j.jag.2014.06.007.

    Article  Google Scholar 

  • Pal, S.K. and Majumdar, T.J. (2012) Geological appraisal of the 85oE Ridge, Bay of Bengal using GRACE and GOCE anomaly. First International GOCE Solid Earth Workshop, University of Twente, Netherland s, 16-17 October 2012, pp.33–34.

    Google Scholar 

  • Pal, S.K., Majumdar, T.J. and Bhattacharya, A.K. (2007) Usage of ERS SAR data over the Singhbhum shear zone, India for structural mapping and tectonic studies. Geocarto Internat. v.22(4), pp.285–295.

    Article  Google Scholar 

  • Pal S.K., Bhattacharya, A.K. and Majumdar, T.J. (2006a). Geological interpretation from Bouguer gravity data over the Singhbhum-Orissa Craton and its surroundings: A GIS approach. Jour. Indian Geophys. Union, v.10(4), pp.313–325.

    Google Scholar 

  • Pal, S.K., Majumdar, T.J. and Bhattacharya, A.K. (2006b) Extraction of linear and anomalous features using ERS SAR data over Singhbhum Shear Zone, Jharkhand using fast Fourier transform. Internat. Jour. Remote Sen., v.27(20), pp.4513–4528.

    Article  Google Scholar 

  • Pathak, V.K., Satya Narayan, Kumar, U., Goswami, O.P. and Pal, S.K. (2015) Structural mapping over Singhbhum-Orissa Craton, India using high resolution EGM2008 gravity data and in situ gravity data. 52nd Annual Convention on Near Surface Earth System Sciences, 2015 November 3-5, NCAOR, Goa: Indian Geophys. Union.

    Google Scholar 

  • Pratsch, J.C. (1978) Future hydrocarbon exploration on continental margins and plate tectonics. Jour. Petro. Geol., v.1 pp.95–105.

    Article  Google Scholar 

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Jour. Geophys. Res., v.117, B04406, doi: 10.1029/2011JB008916.

  • Radhakrishna, M., Verma, R.K., Purushotham, A.K. (2002) Lithospheric structure belowthe eastern Arabian Sea and adjoining west coast of India based on integrated analysis of gravity and seismic data. Mar. Geophys. Res., v.23, pp.25–42.

    Article  Google Scholar 

  • Rajesh, S. and Majumdar, T.J. (2004) 3-D Geoidal surface of the Bay of Bengal lithosphere and its tectonic implications. Internat. Jour. Remote Sen. v.25(15), pp.2897–2902.

    Article  Google Scholar 

  • Rajesh, S., Majumdar, T.J. and Krishna, K.S. (2015) Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental Margin of India and the 85oE Ridge, Bay of Bengal. Indian Jour. Geo-Marine Sci., v.44(6), pp.783–794.

    Google Scholar 

  • Rajesh, S. and Majumdar, T.J. (2010) Geoid versus topography of the Northern Ninetyeast Ridge: Imlications on crustal compensation. Mari. Geophys. Res., v.30, pp.251–264

    Article  Google Scholar 

  • Reid, A.B., Allsop, J.M., Granser, H., Millet, A.J. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, v.55, pp.80–91.

    Article  Google Scholar 

  • Satya Narayan, Sahoo S.D., Pal, S.K., Kumar, U., Pathak, V.K., Majumdar, T.J. and Chouhan, A. (2016) Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto Internat., v.32(1), pp.1–16. DOI: 10.1080/10106049.2016.1140823.

    Google Scholar 

  • Sir Creek Wikipedia the free encyclopedia. en.wikipedia.org/wiki/Sir_Creek.

  • Tedla, G. E., Meijde, M. V. D., Nyblade, A. A. and Meer F. D. V. D. (2011) A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophys. J. Inter. v.187, pp.1–9 doi: 10.1111/j.1365-246X.2011.05140.x

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P. and Sheriff, R. E. (1990) Applied Geophysics. Cambridge Union. Press, New York, USA, 770 pp.

    Google Scholar 

  • Thompson, T. L. (1976) Plate tectonics in oil and gas exploration of continental margins, Amer Assoc. Petr. Geol. Bull., v.60 pp.1463–1501.

    Google Scholar 

  • Thompson, D. T. (1982) EULDPH: A new technique for making computerassisted depth estimates from magnetic data, Geophysics, 47, 31–37.

    Google Scholar 

  • Vaish, J. and Pal, S.K. (2012) Geological appraisal of Jharia coalfield using GRACE gravity data. 49th annual convention on “towards the energy security -exploration, exploitation and new strategies”, 2012 October 29 -31, Gand hinagar: Indian Geophys. Union.

    Google Scholar 

  • Vaish, J. and Pal, S.K. (2015) Geological mapping of Jharia Coalfield, India using GRACE EGM2008 gravity data: a vertical derivative approach. Geocarto Internat., v.30, pp.388–401. DOI:10.1080/10106049.2014. 905637.

    Article  Google Scholar 

  • Verduzco, B., Fairhead, J.D., Green, C.M. and Mackenzie, C. (2004) New insights into magnetic derivatives for structural mapping. The Leading Edge. v.23, pp.116–119.

    Article  Google Scholar 

  • Wang W. Y. (2010) Spatial variation law of the extreme value positions of total horizontal derivative for potential field data. Chinese Jour. Geophys., v.53, pp.2257–2270.

    Google Scholar 

  • Wanyin, W., Yu, P. and Zhiyun, Q. (2009) A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for the potential field data, Appld. Geophys., v.6(3), pp.226–233, DOI: 10.1007/s11770-009-0026-x

    Google Scholar 

  • White, R.S. and McKenzie, D. (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Jour. Geophys. Res., v.94, pp.7685–7729.

    Article  Google Scholar 

  • Yuanyuan, L., Yushan, Y. and Tianyou, L. (2010) Derivative-based techniques for geological contact mapping from gravity data. Jour. Earth Sci., v.21(3), pp.358–364, DOI: 10.1007/s12583-010-0099-8.

    Article  Google Scholar 

  • Zhang, L., Hao, T., Wu, J., Jiang, W. and Xu, Y. (2013) A new texture-based operator for edge enhancement of potential-field data. Jour. Appld. Geophys., v.98, pp.182–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Pal, S.K., Sahoo, S.D. et al. Lineament Mapping over Sir Creek Offshore and its Surroundings using High Resolution EGM2008 Gravity Data: An Integrated Derivative Approach. J Geol Soc India 91, 671–678 (2018). https://doi.org/10.1007/s12594-018-0922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0922-x

Navigation