Advertisement

Journal of the Geological Society of India

, Volume 91, Issue 5, pp 575–582 | Cite as

Exploratory Study of Archaebacteria and their Habitat in Underground, Opencast Coal Mines and Coal Mine Fire Areas of Dhanbad

  • D. Mukherjee
  • V. A. SelviEmail author
  • J. Ganguly
  • L. C. Ram
  • R. E. Masto
Research Articles

Abstract

Coal contains abundant microbial genera which include archaebacteria. The study of archaea kingdom in coal mines is a significant tool for knowing the relationship between coal and archaebacteria, the major role in geochemical cycle and application for further coal bio–beneficiation. The present study related to exploration of archaebacteria and their habitat in coal mining area of Dhanbad with reference to their ecology and nutrient availability that have evolve to grow under extreme conditions. Total six different sites such as two underground coal mines (Sudamdih shaft and Chasnalla underground mine), two opencast coal mines (Chandan project and Bhowra abandoned mine), Jharia mine fire and Sudamdih coal washery of Dhanbad was selected. Seven gram negative obligate anaerobic bacteria were isolated from the selected sites. The isolated species were rod and cocci shaped and the colony was round, smooth, off white in colour and with entire margin and little are cluster of cocci in shape. The isolated species were identified as Methanococcus spp, Methanobacterium spp and Methanosarcina spp. Apart from that two thermoacidophilic sulfur oxidizing bacteria Sulfolobus spp was also isolated from Jharia Coal Mine Fire. The physicochemical and biological characterization of the habitat was also studied for the entire selected area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM D 4638 – 11. Standard guide for preparation of biological samples for inorganic chemical analysis. Volume: 11.01.Google Scholar
  2. Atlas, R.M. and Bartha, R. (2009) Microbial ecology, fundamental and applications, fourth edition, Pearson education.Google Scholar
  3. Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H. (1992) The prokaryotes (2nd edd.), A hand book on biology of bacteria: Ecophysiology, isolation, applications, Springer-Verlag.Google Scholar
  4. Bhardwaj, K.K.R. and Gaur, A.C. (1970) The effect of HA and fulvic acid on the growth and efficiency of nitrogen fixation of Azotobacter chroococum. Folia, v.15(5), pp.364–367.Google Scholar
  5. Brock, T. D., Brock, K. M., Belly, R. T. and Weiss, R. L. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol., v.84, pp. 54–68.CrossRefGoogle Scholar
  6. Burcu, U., Verlin, R.P., Mili, S., Vicente, G.A., Kuk, J.C. and Klaus, N. (2012) Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front. Microbiol., v.3, pp.175 1–14.Google Scholar
  7. Casidajr, L.E., Klein, D.A. and Santoro, T. (1964) Soil dehydrogenase activity. Soil Sci., v.98, pp.371–376.CrossRefGoogle Scholar
  8. Central Mine Planning and Design Institute (CMPDI) Ltd (2006) Ranchi, Jharkhand, India.Google Scholar
  9. Dariusz, S., Flynn, W. P., Courtney, T., Irene, S., Jennifer, L. M., Julius, S. L., Yu-Shih, L., Tobias, F. E., Florence, S., Kai, U. H., Maria M. And Arndt, S. (2008) Methane producing microbial community in a coal bed of the Illinois basin. Appl. Environ. Microbiol., pp. 2424–2432.Google Scholar
  10. Delong, E.F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA, v.89, pp.5685–5689.CrossRefGoogle Scholar
  11. Delong, E.F. (2005) Microbial community genomics in the ocean. Nat. Rev. Microbiol., v.3, pp.459–469.CrossRefGoogle Scholar
  12. Dubey, R.C. and Maheswari, D.K. (2008) Practical Microbiology., 2nd edd. S. Chand publication.Google Scholar
  13. Edwards, T. and Mcbride, B.C. (1975) New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol., v.29, pp.540–545.Google Scholar
  14. Fuhrman, J.A., Mccallum, K. and Davis. A.A. (1992) Novel major archaebacterial group from marine plankton. Nature, v.356, pp.148–49.CrossRefGoogle Scholar
  15. Gaines, I., Salihoglu, and Yilmaz, A. (1983) Comparison of five humic acids. Fuel, v.62, pp.373–379.CrossRefGoogle Scholar
  16. Galand, P.E., Fritze, H., Conrad, R. and Yrjala. K. (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl. Environ. Microbiol., v.71, pp.2195–2198.CrossRefGoogle Scholar
  17. Garcia, J.L. (1990) Taxonomy and ecology of methanogens. FEMS Microbiol. Rev., v.87, pp.297–308.CrossRefGoogle Scholar
  18. Glass, J.B. and Orphan, V.J. (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiol., v.3(61), pp.1–20.Google Scholar
  19. Goodwin, J., Wase, D. and Forster. C. (1990) Effects of nutrient limitation on the anaerobic up flow sludge blanket reactor. Enzyme Microb. Technol., v.12, pp.877–884.CrossRefGoogle Scholar
  20. Green, M.S., Flanegan, K.C. and Gilcrease. P.C. (2008) Characterization of a methanogenic consortium enriched from a coal bed methane well in the Powder river basin, U.S.A. Int. Journal Coal Geol., v.76, pp.34–45.CrossRefGoogle Scholar
  21. Islam, K.R. and Weil, R.R. (2000) Land use effects on soil quality in a tropic forest ecosystem of Bangladesh. Agri. Ecosyst. Environ., v.79, pp.9–16.CrossRefGoogle Scholar
  22. Keough, B.P., Schmidt, T.M. and Hicks. R.E. (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb. Ecol., v.46, pp.238–248.CrossRefGoogle Scholar
  23. Kim, B.S., Oh, H.M., Kang, H. and Chun. J. (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. Jour. Microbiol., v.43, pp.144–151.Google Scholar
  24. Kleikemper, J., Pombo, S. A., Schroth, M.H., Sigler, W.V., Pesaro, M. and Zeyer. J. (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., v.71, pp.149–158.CrossRefGoogle Scholar
  25. Klein, D., Flores, R.M., Venot, C., Gabbert, K., Schmidt, R., et al. (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. Internat. Jour. Coal Geol., v.76, pp.3–13.Google Scholar
  26. Knittel, K., Losekann, T., Boetius, A., Kort, R. and Amann. R. (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., v.71, pp.467–479.CrossRefGoogle Scholar
  27. Krumholz, L.R., Mckinley, J.P. Ulrich, G.A. and Sufita. J. M. (1997) Confined subsurface microbial communities in Cretaceous rock. Nature, v.386, pp.64–66.CrossRefGoogle Scholar
  28. Lepp, P.W., Brinig, M.M., Ouverney, C.C., Palm, K., Armitage, G.C. and Relman. D.A. (2004) Methanogenic archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA, v.101, pp.6176–6181.CrossRefGoogle Scholar
  29. Menyailo, O.V., Lehmann, J., Cravo, M., Silva, D. and Zech, W. (2003) Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil. Biol. Fertility Soils, v.38, pp.1–9.CrossRefGoogle Scholar
  30. Mesa Verde Resources humic acid methodology, Procedure for determination of humic acid content, Placitas, NM-87043. www.humates.com/methodology.htm/Google Scholar
  31. Miles, A. A., Misra, S.S. and Irwin, J.O. (1938) The estimation of the bactericidal power of the blood. J Hygiene, v.38(6), pp.732–749.CrossRefGoogle Scholar
  32. Mills, H.J., Martinez, R.J., Story, S. and Sobecky. P.A. (2005) Characterization of microbial community structure in Gulf of Mexico fas hydrates: comparative analysis of DNA-and RNA-derived clone libraries. Appl. Environ. Microbiol., v.71, pp.3235–3247.CrossRefGoogle Scholar
  33. Mink, R.W. and Dugan, P.R. (1977) Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol., v.33, pp.713–717.Google Scholar
  34. Nelson, D.W. and Sommers, L.E. (1996) Total carbon, organic carbon, and organic matter. In: Sparks, D.L., et, al. (Eds.), Methods of Soil Analysis, Part 3, Chemical Methods. 3rd ed. SSSA, Madison, WI, SSSA Book Services.Google Scholar
  35. Nisar, A. and Mir, S. (1989) Lignitic coal utilization in the form of HA as fertilizer and soil conditioner. Sci. Technol. Develop., v.8 (1), pp.23–26.Google Scholar
  36. Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch, O.L. and Schleper. C. (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol., v.5, pp.787–797.CrossRefGoogle Scholar
  37. Ohtonen, R. (1990) Biological activity and microorganisms in forest soil as indicators of environmental changes. Ph.D Dissertation. Acta University, Oula.Google Scholar
  38. Penner, T. J., Foght, J. M. and Budwill. K. (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Internat. Jour. Coal Geol., v.82, pp.81–93.CrossRefGoogle Scholar
  39. Pierre, O., Anja, S. and Christa, S. 2013 Archaea in Biogeochemical Cycles. Annu. Rev. Microbiol., v.67, pp.437–457.CrossRefGoogle Scholar
  40. Prescott, L.M., Harley, J.P. and Klein, J.P. (2002) Microbiology (5th edd.), McGraw Hill publication, New York.Google Scholar
  41. Prusty, B.K., Harpalani, S. and Singh, A.K. (2009) Quantification of ventilation air methane and its utilization potential at moonidih underground coal mine, india. United States Environmental Protection Agency (USEPA), Washington, D.C.Google Scholar
  42. Sabrina, B., Tillmann, L., Martin, K., Frederick, V.N., Bert, E. and Heribert, C. (2011) Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl. Environ. Microbiol., pp.3749–3756.Google Scholar
  43. Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M. and Ishijima. Y. (2007) Molecular characterization of microbial communities in deep coal seam ground water of northern Japan. Geobiol., v.5, pp.423–433.CrossRefGoogle Scholar
  44. Sim, S.F., Lau, S., Wong, N.C., Janice, A., Muhammad, F., Md, N., Amira, S. and Mohd, P. (2006) Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. J Braz. Chem. Soc., v.17 (3), pp.582–587.CrossRefGoogle Scholar
  45. Simon, H.M., Dodsworth, J.A. and Goodman. R.M. (2000) Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol., v.2, pp.495–505.CrossRefGoogle Scholar
  46. Strapoc, D., Picardal, F.W., Turich, C., Schaperdoth, I., Macalady, J.L., Lipp, J.S., Lin, Y.S., Ertefai, T.F., Schubotz, F., Hinrichs, K.U., Mastalerz, M. and Schimmelmann. A. (2008) Methane producing microbial community in a coal bed of the Illinois Basin. Appl. Environ. Microbiol., v.74, pp.3918.CrossRefGoogle Scholar
  47. Strapoc D., Mastalerz, M., Dawson, K., Macalady, J.L., Callaghan, A., Wawrik, B., and Ashby, M. (2011) Biogeochemistry of Coal-Bed Methane. Ann. Rev. Earth Planetary Sci., v.39(1), pp.617–656.CrossRefGoogle Scholar
  48. Subbiah, B.V. and Asija, G.L. (1956) A rapid procedure for the determination of available nitrogen in soils. Curr. Sci., v.25, pp.259–260.Google Scholar
  49. Takashima, M., Speece, R.E. and Parkin, G.F. (1990) Mineral requirements for methane fermentation. Crit. Rev. Environ. Control., v.19, pp.465–479.CrossRefGoogle Scholar
  50. Tanner, R.S. (2002) Cultivation of bacteria and fungi, In: Hurst, C.J., R.L. Crawford, G.B. Knudsen, M.J. Mclnerney, and L.D. Syetzenbach. (Eds). Manual of Environmental Microbiology, Second edition, ASM (American Society of Microbiology) Press, Washington DC.Google Scholar
  51. Ulrich, G. and Bower. S. (2008) Active methanogenesis and acetate utilization in Powder river basin coals, United States. Internat. Jour. Coal Geol., v.76, pp.25–33.CrossRefGoogle Scholar
  52. United State Department of Agriculture (USDA) (2014) Natural resources conservation service. Soil health-Guide for educator.Google Scholar
  53. Woese, C.R., Kandler, O. and Wheelis. M.L. (1977) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, v.87, pp. 4576–4579.CrossRefGoogle Scholar
  54. Yingei, W. and Resin, H.A. (1988) Treatment of Copper and Nickle. Haunjing Bashu., v.7, pp.21–22.Google Scholar
  55. Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., et al. (2002) Cultivating the uncultured. Proc. Natl. Acad. Sci. USA, v.99, pp.15681–15686.CrossRefGoogle Scholar
  56. Zhang, Y. and Gladyshev, V.D. (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem. Rev., v.4828, pp.4828–4861.CrossRefGoogle Scholar
  57. Zhang, Y. and Gladyshev, V.D. (2010) General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. Jour. Biol. Chem., v.285, pp.3393–3405.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • D. Mukherjee
    • 1
  • V. A. Selvi
    • 1
    Email author
  • J. Ganguly
    • 2
  • L. C. Ram
    • 1
  • R. E. Masto
    • 1
  1. 1.CSIR-Central Institute of Mining and Fuel Research, Industrial Biotechnology and Waste Utilization Division, Digwadih Campus, PO-FRIDhanbadIndia
  2. 2.Indian Institute of Engineering Science and Technology, Shibpur, Department of Chemistry, PO- Botanical GardenHowrahIndia

Personalised recommendations