Journal of the Geological Society of India

, Volume 91, Issue 3, pp 334–340 | Cite as

Assessment of Groundwater Vulnerability in Upper Betwa River Watershed using GIS based DRASTIC Model

  • Shobharam Ahirwar
  • J. P. Shukla
Research Articles


Groundwater, the most vital water resource being used for irrigation, domestic and industrial purposes is nowadays under severe threat of contamination. Groundwater contamination risk assessment is an effective tool for groundwater management. In the study, a DRASTIC model which is based on the seven hydrogeological parameters viz: depth of water, net-recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity was used to evaluate the groundwater pollution potentiality of upper Betwa watershed. ArcGIS was used to create the ground water vulnerability map by overlaying the seven layers. Based on groundwater vulnerability map, the watershed has been divided in three vulnerable zones viz; low vulnerability zone with 42.83 km2 of area, moderate with 369.21 km2 area and high having 270.96 km2 of area. Furthermore, the DRASTIC model has been validated by nitrate concentration over the area. Results of validation have shown that in low vulnerable zone, no nitrate contamination has been recorded. While in the moderate zone nitrate has been found in the range of 1.6-10ppm. However, in high vulnerable zone 11-40ppm of nitrate concentration in groundwater has been recorded, which proves that the DRASTIC model is applicable for the prediction of groundwater vulnerability in the watershed and in similar areas too.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Adamat, R.A.N., Foster, I.D.L. and Baban, S.N.J. (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Appld. Geography, v.23, pp.303–324.CrossRefGoogle Scholar
  2. Atkinson, S.F., Thomlinson, J.R. (1994) An examination of groundwater pollution potential through GIS modeling. ASPRS/ACSM.Google Scholar
  3. Aller, L., Bennet, T., Lehr, J.H., Petty, R.J. and Hacket, G. (1985) DRASTIC A standardized system for evaluating ground water pollution using hydrological settings. Ada, OK, USA, Prepared by the National Water well Association for the USEPA office of Research and Development.Google Scholar
  4. Aller, L., Bennet, T., Lehr, J. H., & Petty, R. J. (1987) DRASTIC: A standardized system for evaluating ground water pollution potential using hydro geologic settings. USEPA document no. EPA/600/2-85-018.Google Scholar
  5. Chandrashekhar, H., Adiga, S., Lakshminarayana, V., Jagdeesha, C.J., Nataraju, C. (1999) A case study using the model ‘DRASTIC’ for assessment of groundwater pollution potential. In: Proceedings of the ISRS national symposium on remote sensing applications fornatural resources. June 19–21.Google Scholar
  6. Bangalore. Foster, S., Garduno, H., Kemper, K., Tuinhof, A., Nanni, M., Dumars, C. (2003) World Bank sustainable groundwater management: Concepts and tools, groundwater quality protection defining strategy and setting priorities. Washington, DC, USA: GW-MATE Briefing Note Series, World Bank.Google Scholar
  7. Foster, S.S.D., Chilton, P.J. (2003) Groundwater: the processes and global significance of aquifer degradation. Philosophical Trans. Royal Soc. London, B, v.358, pp.1957–1972.CrossRefGoogle Scholar
  8. Fritch, T.G., McKnight, C.L., Yelderman, J.C., Arnold, J.G. (2000) Environmental auditing: An aquifer vulnerability assessment of the Paluxy Aquifer, Central Texas, USA, using GIS and a modified DRASTIC approach. Jour. Environ. Managt., v.25(3), pp.337–345.Google Scholar
  9. Ghosh, A., Tiwari, A. K. and Das, S. (2015) A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Modeling Earth Systems and Environ., v.1(3), p.11. DOI: 10.1007/s40808-015-0009-2CrossRefGoogle Scholar
  10. Hamza, M.H., Added, A., Rodriguez, R., Abdeljaoued, S., Mammou, B. (2007) A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Rafaquifer, Northern Tunisia). Jour. Environ. Managmt., v.84, pp.12–19.CrossRefGoogle Scholar
  11. Hamutoko, J. T., Wanke, H. and Voigt, H. J. (2015) Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia. Physics and Chemistry of the Earth. DOI: 10.1016/j.pce.2015.12.007Google Scholar
  12. Jamrah, A., Futaisi, A.A., Rajmohan, N., Al-Yaroubi, S. (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess., v.147(1–3), pp.125–138.CrossRefGoogle Scholar
  13. Jaseela, C., Prabhakar, K. and Harikumar, P.S.P. (2016) Application of GIS and DRASTIC Modeling for Evaluation of Groundwater Vulnerability near a Solid Waste Disposal Site. Internat. Jour. Geosci., 7(April), 558–571. DOI:10.4236/ijg.2016.74043.CrossRefGoogle Scholar
  14. Kaddour, K,, Houcine, B., Smail, M. (2014) Assessment of the vulnerability of an aquifer by DRASTIC and SYNTACS methods/: Aquifer of Bazer–Geult Zerga area (northeast Algeria). E3 Jour. of Environ. Research and Management, v.5(9). pp.0169–0179.Google Scholar
  15. Kalinski, R.J., Kelly, W.E., Bogardi, I., Ehrman, R.L. and Yamamoto, P.D. (1994) Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska. Groundwater, v.32(1), pp.31–34.CrossRefGoogle Scholar
  16. Kazakis, N. and Voudouris, K.S. (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Jour. Hydrol., v.525, pp.13–25. DOI:10.1016/j.jhydrol.2015.03.035CrossRefGoogle Scholar
  17. Kim, Y.J. and Hamm, S. (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol. Jour., v.7(2), pp.227–235.CrossRefGoogle Scholar
  18. Knox, R.C., Sabatini, D.A. and Canter, L.W. (1993) Sub-surface transport and fate processes. Lewis publishers, USA.Google Scholar
  19. Leone, A., Ripa, M.N., Uricchio, V., Deak, J. and Vargay, Z. (2009) Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary’s main aquifer using DRASTIC and GLEAMS models. Jour. Environ. Managmt., v.90, pp.2969–2978.CrossRefGoogle Scholar
  20. Lathamani, R., Janardhana, M., Mahalingam, B. and Suresha, S. (2015) Evaluation of Aquifer Vulnerability Using Drastic Model And GIS: A Case Study Of Mysore City, Karnataka, India. Aquatic Procedia Elsevier, v.4(4), pp.1031–1038. DOI:10.1016/j.aqpro.2015.02.130CrossRefGoogle Scholar
  21. Lobo-Ferreira, J.P. and Oliveira, M.M. (1997) DRASTIC groundwater vulnerability mapping of Portugal, groundwater: An endangered resource. In: Proc. 27th Congress of the International Association for Hydraulic Research, San Francisco, USA, August 10–15, 1997 Theme C, pp.132–137.Google Scholar
  22. Lowe, M. and Butler, M. (2003) Groundwater sensitivity and vulnerability to pesticides, Herber and Round Valleys, Watsach County, Utah. Salt Lake City, UT: Utah Geological Survey.Google Scholar
  23. Mfumu Kihumba, A., Vanclooster, M. and Ndembo Longo, J. (2017) Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. Jour. African Earth Sci., v.126, pp.13–22. DOI:10.1016/j.jafrearsci.2016.11.025CrossRefGoogle Scholar
  24. Margat, J. (1968) Vulnerabilite desnappes d’eau souterraineala pollution. Basede lacartographie, Doc. BRGM, 68 SGL 198 HYD. Orlean, France.Google Scholar
  25. Navada, S.V., Nair, A.R., Rao, S.M., Paliwall, B.L., Doshi, C.S. (1993) Groundwater recharge studies in arid region of Jalore, Rajasthan using isotope techniques. Jour. Arid Environ., v.24, pp.125–133CrossRefGoogle Scholar
  26. NBSS&LUP, ICAR, Nagpur (1996). Soils of Madhya Pradesh. NBSS Publ. 59.Google Scholar
  27. Pacheco, F. A. L., Pires, L. M. G. R., Santos, R. M. B. and Sanches Fernandes, L. F. (2015) Factor weighting in DRASTIC modeling. Sci. Total Environ., v.505, pp.474–486. DOI:10.1016/j.scitotenv.2014.09.092CrossRefGoogle Scholar
  28. Piscopo, G. (2001) Ground water vulnerability map, explanatory notes, Castlereagh Catchment, NSW, Department of Land and Water Conservation, Australia, 2001; Scholar
  29. Prasad, K., Shukla, J.P. (2014) Assessment of groundwater vulnerability using GIS-based DRASTIC technology for the basaltic aquifer of Burhner watershed, Mohgaon block, Mandla (India). Curr. Sci., v.107, pp.1649–1656.Google Scholar
  30. Rao, S.M., Mamatha, P. (2004) Water quality in sustainable water management. Curr. Sci., v.87(7), pp.942–947.Google Scholar
  31. Ritzema, H.P. (2006) Determining the Saturated Hydraulic Conductivity (Oosterbaan RJ and Nijland HJ) In: H. P. Ritzema (Ed) Drainage Principles and Applications (pp. 283–294). ILRI Publ. 16, Wageningen, The Netherlands.Google Scholar
  32. Rahman, A. (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh India. Appld Geography, v.28(1), pp.32–53.CrossRefGoogle Scholar
  33. Rosen, L. (1994) Study of the DRASTIC methodology with the emphasis on Swedish conditions. In Program and abstracts of the 37thconference of the International Association for Great Lakes Research and Estuarine Research Federation. Buffalo, NY: IAGLR. p.166.Google Scholar
  34. Rundquist, D.C., Rodekohr, D.A., Peters, Albert, J., Ehrman, R.L., Di, L. and Murray, G. (1991) State wide groundwater-vulnerability assessment in Nebraska using the DRASTIC/GIS model. Geocar to International, 2 Hong Kong.Google Scholar
  35. Shahid, S. (2000) A study of groundwater pollution vulnerability using DRASTIC/GIS, west Bengal, India. Journal of Environmental Hydrology, 8, 124 Sacramento, USA.Google Scholar
  36. Sahu, P.C. and Nandi, D. (2015) Evaluation of Ground Water Pollution Potential Using Drastic Model: A case study in Berhampur city, Orissa. Internat. Jour. Geol., Earth & Environ. Sci., v.5(3), pp.55–61.Google Scholar
  37. Smith, P.A., Scott, H.D. and Fugitt, T. (1994) Influence of geographic database scale on prediction of groundwater vulnerability to pesticides. Jour. Soil Contamination, v.3, pp.285–298.CrossRefGoogle Scholar
  38. Thapinta, A. and Hudak, P.F. (2003) Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environment, v.29(1), pp.87–93.Google Scholar
  39. Todd, D.K. (1980) Groundwater hydrology (2nd ed.). New York, NY: Wiley. US General Accounting Office (GAO). (1991) Groundwater protection: Measurement of relative vulnerability to pesticide contamination. Washington, DC: US General Accounting Office. GAO/PEMD-92-8.Google Scholar
  40. Tesoriero, A.J., Inkpen, E.L. and Voss, F.D. (1998) Assessing groundwater vulnerability using logistic regression. In: Proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX, pp 157–165.Google Scholar
  41. US EPA Another look: National Survey of Pesticides in Drinking Water Wells Phase, II Report, EPA 579/09-91-020. EPA, Washington, DC, 1992.Google Scholar
  42. Victorine Neh, A., Ako Ako, A., Richard Ayuk, A. and Hosono, T. (2015) DRASTIC-GIS model for assessing vulnerability to pollution of the phreatic aquiferous formations in Douala-Cameroon. Jour. African Earth Sci., v.102, pp.180–190. DOI:10.1016/j.jafrearsci.2014.11.001CrossRefGoogle Scholar
  43. Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L. and Tarhouni, J. (2016) Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment. Groundwater for Sustainable Development, v.2–3, pp.169–181. DOI:10.1016/j.gsd.2016.10.001CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.CSIR-Advanced Materials and Processes Research InstituteBhopalIndia

Personalised recommendations