Journal of the Geological Society of India

, Volume 91, Issue 3, pp 281–289 | Cite as

Characterization of Panandhro Lignite Deposits (Kachchh Basin), western India: Results from the Bulk Geochemical and Palynofloral Compositions

  • R. P. Mathews
  • B. D. Singh
  • Hukam Singh
  • V. P. Singh
  • Alpana Singh
Research Articles


Characterization of the Panandhro lignite deposits from western Indian state of Gujarat, based on the geochemical and palynological evidences, has been performed to assess the floral composition, maturity and hydrocarbon potential of the sequence. Elementally, the lignites consist of moderate carbon, low hydrogen and moderate sulfur contents. The samples are characterized by high TOC contents (lignite: av. 46.43 wt.%, resin: 62.47 wt.%). The average HI values for the lignite is 136 mg HC/g TOC, and that of the associated resin is 671 mg HC/g TOC. The highest Tmax is recoded in lignite (422°C) and lowest in the resin (39°C) samples. The FTIR spectrum of lignite is characterized by highly intense OH stretching peak ~3350 cm-1, aliphatic CHx stretching peaks between 3000-2800 cm-1, aromatic C=O stretching and an aromatic C=C stretching. The spectrum of resin shows strongest absorption due to aliphatic CHx stretching between 2940-2915 cm-1 and 2870-2850 cm-1, and deformation by the medium peak between 1450 and 1650 cm-1. The recovered palynofloral assemblage indicates the dominance of angiosperm pollen grains with maximum abundance of Arecaceae family, and subdominant pteridophytic spores. Marine influence is indicated by the presence of abundant dinoflagellate cysts. The occurrence of flora from a variety of ecological niches suggests a luxuriant diverse vegetation pattern existed in the vicinity of depositional site under humid tropical conditions. The overall characteristics of the lignite deposits point towards their ability to generate (upon maturation) hydrocarbons as they have types III–II admixed kerogen (organic matters).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskin, D.K. (1997) Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG Bull., v.81, pp.1437–1450.Google Scholar
  2. Biswas, S.K. (1992) Tertiary stratigraphy of Kutch. Jour. Palaeontol. Soc. India, v.37, pp.1–29.Google Scholar
  3. Biswas, S.K. and Deshpande, S.V. (1970) Geological and tectonic maps of Kutch. In: Bull. Oil and Natural Gas Comm., v.7, pp.115–116.Google Scholar
  4. Casagrande, D.J., Siefert, K., Berschinski, C. and Sutton, N. (1977) Sulfur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: Origins of sulfur in coal. Geochim. Cosmochim. Acta, v.41, pp.161–167.CrossRefGoogle Scholar
  5. Chen, Y., Furmann, A., Mastalerz, M. and Schimmelmann, A. (2014) Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel, v.116, pp.538–549.CrossRefGoogle Scholar
  6. Chen, Y., Mastalerz, M. and Schimmelmann, A. (2012) Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Internat. Jour. Coal Geol., v.104, pp.22–33.CrossRefGoogle Scholar
  7. Dembicki, H. JR. (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull., v.93, pp.341–356.CrossRefGoogle Scholar
  8. Dutta, S., Mallick, M., Bertram, N., Greenwood, P.F. and Mathews, R.P. (2009) Terpenoid composition and class of Tertiary resins from India. Internat. Jour. Coal Geol., v.80, pp.44–50.CrossRefGoogle Scholar
  9. Dutta, S., Mathews, R.P., Singh, B.D., Tripathi, S.K.M., Singh, A., Saraswati, P.K., Banerjee, S. and Mann, U. (2011) Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential. Internat. Jour. Coal Geol., v.85, pp.91–102.CrossRefGoogle Scholar
  10. Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., leplat, P. and Paulet, P. (1977) Méthodé rapide de charectérisation des roches méres, de leur potential pétrolier et de leur degré d évolution. Inst. Fr. Pet. Rev., v.32, pp.23–43.CrossRefGoogle Scholar
  11. Ferraro, J.R. and Basile, L.J. (1985) Fourier transform infrared spectroscopy-Applications to chemical systems. Academic Press, v.4, pp.169–142.Google Scholar
  12. Ganz, H. and Kalkreuth, W. (1987) Application of the infrared spectroscopy to the classification of kerogen-types and the evolution of source rock and oil shale potentials. Fuel, v.66, pp.708–711.CrossRefGoogle Scholar
  13. Georgakopoulos, A., Iordanidis, A. and Kapina, V. (2003) Study of low rank Greek coals using FTIR spectroscopy. Energy Sources, v.25, pp.995–1005.CrossRefGoogle Scholar
  14. Guo, Y. and Bustin, R.M. (1997) Micro-FTIR spectroscopy of liptinite macerals in coal. Internat. Jour. Coal Geol., v.36, pp.259–275.CrossRefGoogle Scholar
  15. Guo, Y., Renton, J.J. and Penn, J.H. (1996) FTIR microspectroscopy of particular liptinite-(lopinite) rich, late Permian coals from southern China. Int. Jour. Coal Geol., v.29, pp.187–197.CrossRefGoogle Scholar
  16. Hakimi, M.H., Abdullah, W.H., Sia, S.G. and Makeen, Y.M. (2013) Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine Petrol. Geol., v.48, pp.31–46.CrossRefGoogle Scholar
  17. Hunt, J.M. (1991) Generation of gas and oil from coal and other terrestrial organic matter. Org. Geochem., v.17, pp.673–680.CrossRefGoogle Scholar
  18. Hunt, J.M (1996) Petroleum geochemistry and geology. 2nd Ed., W.H. Freeman, San Fransisco, California, 707 pp.Google Scholar
  19. Ibarra, J.V., Munoz, E. and Moliner, R. (1996) FTIR study of the evolution of coal structure during the coalification process. Org. Geochem., v.24, pp.725–735.CrossRefGoogle Scholar
  20. Iglesias, M.J., Jiménez, A., Laggoun-Défarge, F. and Suarez Ruiz, I. (1995) FTIR study of pure vitrains and associated coals. Energy and Fuels, v.9, pp.458–466.CrossRefGoogle Scholar
  21. Kar, R.K. (1985) The fossil floras of Kachchh. IV-Tertiary palynostratigraphy. The Palaeobotanist, v.34, pp.1–280.Google Scholar
  22. Kumar, S., Singh, A. and Dogra, N.N. (2013) Huminite Reflectance Attributes for Rank Estimation of Panandhro Lignite Deposit (Kutch Basin), Gujarat, India. Gondwana Geol. Mag., v.28, pp.11–16.Google Scholar
  23. Lafargue, E., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Oil & Gas Science and Technology, v.53, pp.421–437.Google Scholar
  24. Langford, F.F. and Blanc-Valleron, M.M. (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull., v.74, pp.799–804.Google Scholar
  25. Mandal, J. (1999) Fossil Rivulariaceae from the Early Eocene of Kutch, India. Jour. Palaeontol. Soc. India, v.44, pp.135–139.Google Scholar
  26. Mastalerz, M. and Bustin, R.M. (1995) Application of reflectance micro-Fourier infrared spectroscopy in studying coal macerals: Comparison with other Fourier transform infrared techniques. Fuel, v.74, pp.536–542.CrossRefGoogle Scholar
  27. Mathews, R.P, Tripathi, S.K.M, Banerjee, S. and Dutta, S. (2013) Palynology, palaeoecology and palaeodepositional environment of Eocene lignites and associated sediments from Matanomadh mines, Kutch Basin, Western India. Jour. Geol. Soc. India, v.82, pp.236–248.CrossRefGoogle Scholar
  28. Mathews, R.P. and Singh, B.D. (2016) Characterization of solid bitumen from Panandhro lignite (western India) based on FTIR and Pyrolysis GC-MS study. Curr. Sci., v.111, pp.1842–1846.CrossRefGoogle Scholar
  29. Misra, B.K. (1992) Spectral fluorescence analysis of some lignite macerals from Panandhro lignite (Kutch), Gujarat, India. Int. Jour. Coal Geol., v.20, pp.145–163.CrossRefGoogle Scholar
  30. Misra, B.K. and Navale, G.K.B. (1992) Panandhro lignite from Kutch (Gujarat), India: Petrological nature, genesis, rank and sedimentation. The Palaeobotanist, v.39, pp.236–249.Google Scholar
  31. Monga, P., Kumar, M., Prasad, V. and Joshi, Y. (2015) Palynostratigraphy, palynofacies and depositional environment of a lignite-bearing succession at Surkha Mine, Cambay Basin, north-western India. Acta Palaeobotanica, v.55, pp.183–207.CrossRefGoogle Scholar
  32. Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W. and Davis, A. (1981) Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Applied Spectroscopy, v.35, pp.475–485.CrossRefGoogle Scholar
  33. Painter, P.C., Starsinic, M. and Coleman, M.M. (1985) Determination of functional groups in coal by fourier transform interferometry. In: Ferraro, J.R. and Basile, L.J. (Eds.), Fourier Transform Infrared Spectrometry, Academic press, New York, v.4, pp.169–240.Google Scholar
  34. Pareek, H.S. (1984) Petrological nomenclature and classification of Paleogene lignites of northwestern India. In: 9th C.R. Congr. Int. Stratigr. Geol. Carbonif., Washington D.C., v.4, pp.540–554.Google Scholar
  35. Paul, S., Sharma, J., Singh, B.D., Saraswati, P.K. and Dutta, S. (2015) Early Eocene equatorial vegetation and depositional environment-biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. Internat. Jour. Coal Geol., v.149, pp.77–92.CrossRefGoogle Scholar
  36. Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, v.70, pp.318–329.Google Scholar
  37. Peters, K.E. and Cassa M.R. (1994) Applied source rock geochemistry. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System from Source to Trap, AAPG Memoir, v.60, pp.93–120.Google Scholar
  38. Petersen, H.I., Rosenburg, P. and Nytoft, H.P. (2008) Oxygen groups in coals and alginite-rich kerogen revisited. Int. Jour. Coal Geol., v.74, pp.93–113.CrossRefGoogle Scholar
  39. Raju, D.S.N and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil. Current Science, v. 104, pp.752–757.Google Scholar
  40. Rochdi, A. and Landias, P. (1991) Transmission micro-infrared spectroscopy, an efficient tool for micro scale characterization of coal. Fuel, v.70, pp.364–371.CrossRefGoogle Scholar
  41. Ryu, I. (2008) Source rock characterization and petroleum systems of Eocene Tyee basin, southern Oregon Coast Range, USA. Org. Geochem., v.39, pp.75–90.CrossRefGoogle Scholar
  42. Sahay, V.K. (2011) The hydrocarbon potential, thermal maturity, sequence stratigraphic setting and depositional palaeoenvironment of carbonaceous shale and lignite successions of Panandhro, northwestern Kutch Basin, Gujarat, western India. Cent. Eur. Jour. Geosci., v.3, pp.12–28.Google Scholar
  43. Saraswati, P.K. and Banerjee, R.K. (1984) Lithostratigraphic classification of the tertiary sequence of northwestern Kutch. Proc. X Indian Collq. Micropaleontol. Stratigr, Pune, pp.369–376.Google Scholar
  44. Sharma A., Saikia, B. K., Phukan, S.,. Baruah B. P. (2016) Petrographical and Thermo-chemical Investigation of some North East Indian High Sulphur Coals. Jour. Geol. Soc. India, v.88, pp.609–619.CrossRefGoogle Scholar
  45. Sharma, J. and Saraswati, P.K. (2015) Lignites of Kutch, Western India: Dinoflagellate biostratigraphy and palaeoclimate. Revue de Micropaleontol., v.58, pp.107–119.CrossRefGoogle Scholar
  46. Singh, A. (2002) Rank assessment of Panandhro lignite deposit, Kutch Basin, Gujarat. Jour. Geol. Soc. India, v.59, pp.69–77.Google Scholar
  47. Singh, A. and Singh, B.D. (2005) Petrology of Panandhro lignite deposit, Gujarat in relation to palaeodepositional condition. Jour. Geol. Soc. India, v.66, pp.334–344.Google Scholar
  48. Singh, B.D. and Singh, A. (2003) Petrographic evaluation of lignites from Panandhro field (Kachchh Basin), Gujarat. Minetech, v.24, pp.48–63.Google Scholar
  49. Singh, H. (2015) Palynofloral investigation of the Akli Formation (Palaeocene) of Giral lignite mine, Barmer district, Rajasthan. Geophytology, v.45, pp. 209–214.Google Scholar
  50. Singh, H., Prasad, M., Kumar, K. and Singh, S.K. (2015) Early Eocene macroflora and associated palynofossils from the Cambay Shale Formation, Western India: Phytogeographic and palaeoclimatic implications. Palaeoworld, v.24, pp.293–323.CrossRefGoogle Scholar
  51. Singh, H., Samant, S., Adatte, T. and Khozyem, H. (2014) Diverse palynoflora from amber and associated sediments of Tarkeshwar lignite mine, Surat district, Gujarat, India. Curr. Sci., v.106, pp.930–932.Google Scholar
  52. Singh, P.K., Singh, V.K., Rajak, P.K., Singh, M.P., Naik, A.S., Raju S.V. and Mohanty D. (2016a) Eocene Lignites from Cambay Basin, Western India: An Excellent Source of Hydrocarbon. Geosciences Frontiers, v.7, pp.811–819.CrossRefGoogle Scholar
  53. Singh, P.K., Rajak, P.K., Singh, M.P., Singh, V.K. and Naik, A.S. (2016b) Geochemistry of Kasnau-Matasukh lignites, Nagaur Basin, Rajasthan (India). Internat. Jour. Coal Sci. Tech., v.3, pp.104–122.CrossRefGoogle Scholar
  54. Singh, V.P., Singh, B.D., Singh, A., Singh, M.P., Mathews, R.P., Dutta, S., Mendhe, V.A., Mahesh, S. and Mishra, S. (2017) Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics. Internat. Jour. Coal Geol., v.171, pp.223–242.CrossRefGoogle Scholar
  55. Sobkowiak, M. and Painter, P.C. (1992) Determination of aliphatic and aromatic CH contents of coals by FT-IR: Studies of coal extracts. Fuel, v.71, pp.1105–1125.CrossRefGoogle Scholar
  56. Stankiewicz, B.A., Kruge, M.A. and Mastalerz, M. (1996) A geochemical study of macerals from Miocene lignite and an Eocene bituminous coal, Indonesia. Org. Geochem., v.24, pp.531–545.CrossRefGoogle Scholar
  57. Stojanoviæ, K., •ivotiæ, D., Šajnoviæ, A., Cvetkoviæ, O., Nytoft, H.P. and Scheeder, G. (2012) Drmno lignite field (Kostolac Basin, Serbia): Origin and palaeoenvironmental implications from petrological and organic geochemical studies. Jour. Serbian Chem. Soc., v.77, pp.1109–1127.CrossRefGoogle Scholar
  58. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G. and Hackley, P.C. (2012) Review and update of the applications of organic petrology: Part 1, Geological applications. Int. Jour. Coal Geol., v.22, pp.54–112.CrossRefGoogle Scholar
  59. Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert, P. (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, 704p.Google Scholar
  60. Traverse, A. (1988) Palaeopalynology. Unwin Hyman Ltd., London, 600 pp.Google Scholar
  61. Tissot, P. and Welte, D. (1984) Petroleum formation and occurrence, 2nd ed., Springer Verlag, Berlin, 699 p.CrossRefGoogle Scholar
  62. Tripathi, S.K.M., Mathur, S.C., Nama, S.L. and Srivastava, D. (2007) Palynological studies from Early Eocene sequence exposed near Matasukh, Nagaur District, western Rajasthan, India. In: Trivedi, P. C. (Ed.), Palaeobotany to Modern Botany. Pointer Publishers, Jaipur, India, pp.49–56.Google Scholar
  63. Tripathi, S.K.M., Singh, U.K. and Sisodia, M.S. (2003) Palynological investigation and palaeoenvironmental interpretations on Akli Formation (Late Palaeocene), Barmer District, Rajasthan, India. The Palaeobotanist, v.52, pp.87–96.Google Scholar
  64. Tripathi, S.K.M. and Srivastava, D. (2012) Palynology and palynofacies of the Early Palaeogene lignite bearing succession of Vastan, Cambay Basin, western India. Acta Palaeobotanica, v.52, pp.157–175.Google Scholar
  65. Vassallo, A.M., Liu, Y.L., Pang, L.S.K. and Wilson, M.A. (1991) Infrared spectroscopy of coal maceral concentrates at elevated temperatures. Fuel, v.70, pp.635–639.CrossRefGoogle Scholar
  66. Wang, B., Fan, S., Xu, F., Jiag, S. and Fu, J. (1983) A preliminary organic geochemical study of the Fushan depression, A Tertiary basin of eastern China. Adv. in Org. Geochem., pp. 108–113.Google Scholar
  67. Waples, D. (1985) Geochemistry in petroleum exploration. Springer, Netherlands, 157p.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • R. P. Mathews
    • 1
  • B. D. Singh
    • 1
  • Hukam Singh
    • 1
  • V. P. Singh
    • 1
  • Alpana Singh
    • 1
  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations