Advertisement

Journal of the Geological Society of India

, Volume 91, Issue 3, pp 273–280 | Cite as

Micro-Tremor Induced Gravity and Seismic Noise Spectra in the Garhwal Himalaya and the Adjoining Regions

  • Rajesh Sathyaseelan
  • John P. Pappachen
  • Anil K. Mundepi
Research Articles

Abstract

The characteristic site response spectra of soft sedimentary rocks in the Garhwal Himalaya and a few localities in the adjoining Ganga plain and Himachal Himalaya have been studied through short period passive seismic source experiment using ambient noise data. Along with this, stand-alone temporal gravity data in the Doon valley was also acquired. It has been observed that there exist two extreme frequency bands in the gravity and seismic response spectra of alluvial soft sediments in the Doon valley and the adjoining regions, when it subjected to micro-seismic and gravity-tidal oscillation. The concept of damped harmonic oscillator was used to study the fundamental long period modes in the density driven diffusive fluid flow in the valley alluvial pore spaces, and observed that the flow was continued from minutes to a few days. In this case, apart from the diurnal component, the observed fundamental modes are in the bands from 0.42 to 1.83 days. The characteristic frequencies of seismic response spectra for the fundamental modes of thick soft sediments were also studied using the spectral ratio (HVSR) method of Nakamura. In the Ganga basin, a moderate resonant frequency of 3 Hz is sufficient for thick soft sediment to cause relatively large vertical amplitude, which suggest possibility for sub-surface secondary seismic effects like liquefaction. However, the hard rock terrains in the lesser Himalaya, where only a veneer of soft sediment is present, show relatively high frequency values of 15 to 18 Hz even to produce an H/V amplitude ratio of 1 and 1.7 and hence could be considered as relatively stable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambraseys, N and Douglas, J. (2004) Magnitude calibration of north Indian earthquakes. Geophys. Jour. Internat., v.159, pp.165–206.CrossRefGoogle Scholar
  2. Avouac, J.-P., Meng, L., Wei, S., Wang, T. and Ampuero J.-P. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geosciences, v.8, pp.708–711.CrossRefGoogle Scholar
  3. Bath, M. (1974) Spectral analysis in Geophysics. Elsevier Scientific Publishing Company, Amsterdam, p.563.Google Scholar
  4. Bilham, R., Gaur, V. K. and Molnar, P. (2001) Himalayan Seismic Hazard. Science, v.293, pp.1442–1444.CrossRefGoogle Scholar
  5. Bomfim, E. P., Braitenberg, C. and Molina, E. C. (2013) Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys. Jour. Internat., v.195 (2), pp. 870–882.CrossRefGoogle Scholar
  6. Braitenberg, C. and Shum, C. K. (2015) Geodynamic implications of temporal gravity changes over Tibetan Plateau, Italian Jour. Geosciences, doi: 10.3301/IJG.2015.38Google Scholar
  7. CG3/3M (1995) Scintrex CG-3/3M High precision gravity User’s guide. Published by Scintrex Limited, 222 Snidercroft Road, Concord, Ontario, Canada, 120p.Google Scholar
  8. Chandra, U. (1978) Seismicity, earthquake mechanism and tectonics along the Himalayan mountain range and vicinity. Phys. Earth and Planet. Internat., v.16, pp.109–131.CrossRefGoogle Scholar
  9. Dasgupta, S. and Mukhopadhyay, B. (2014) 1803 earthquake in Garhwal Himalaya-Archival materials with commentary. Indian Jour. HistorySci., v.49(1), pp.21–33.Google Scholar
  10. Dravinski, M., Ding, G. and Wen, K.L. (1996) Analysis of spectral ratio for estimating ground motion in deep basins. Bull. Seismol. Soc. Amer., v.86, pp.646–654.Google Scholar
  11. Gansser, A. (1964) Geology of the Himalaya. Wiley-Interscience, New York, 289p.Google Scholar
  12. Gansser, A. (1980) The Indian Ocean and the Himalayas: a geological interpretation. Eclogae Geologicae Helvetiae, v.67, pp.479–507.Google Scholar
  13. Gansser, A. (1996) The significance of the Himalayan Suture Zone. Tectonophysics, v.82, pp.37–52.Google Scholar
  14. GSI (Geological Survey of India) (2000) Seismotectonic Atlas of India and its environs. http://www.portal.gsi.gov.in/portal/page?_pageid=127,991822&_dad=portal&_schema=PORTALGoogle Scholar
  15. Harnisch, G. and Harnisch, M. (2006) Hydrological influences in long gravimetric data series. Jour. Geodyn., v.41, pp.276–287.CrossRefGoogle Scholar
  16. Jarvis, A., Reuter, H. I., Nelson, A. and Guevara, E. (2008) Hole-filled SRTM for the globe. Version 4, available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.orgGoogle Scholar
  17. Kayal, J.R. (2008) Micro-earthquake seismology and seismotectonics of South Asia. Springer Publications, p.425.Google Scholar
  18. Khattri, K.N. and Tyagi, A.K. (1983) The transverse tectonic features in the Himalaya. Tectonophysics, v.5, pp.281–297.CrossRefGoogle Scholar
  19. Lermo, J. and Chavez-Garcia, F. J. (1994) Are microtremor useful in site response evaluation. Bull. Seismol. Soc. Amer., v.84, pp.1350–1364.Google Scholar
  20. Luzon, F., Palencia, V. J., Morlaes, J. and Sanchez-Sesma, F. J. (2002) Evaluation of Site Effects in Sedimentary Basins. Fýsica de la Tierra, v.14, pp.183–214.Google Scholar
  21. Majumdar, T. J., Mohanty, K. K., Mishra, D. C. and Arora, K. (2001) Gravity image generation over the Indian subcontinent using NGRI/EGM96 and ERS-1 altimeter data. Curr. Sci., v.80(4), pp.542–554.Google Scholar
  22. Mohanty, W. K., Walling, M. Y., Nath, S. K. and Pal, I. (2007) First order seismic micro-zonation of Delhi, India using geographic information system (GIS). Nat. Hazards, v.40(2), pp.245–260.CrossRefGoogle Scholar
  23. Molnar, P., Chen, W. P., Fitch, T. J., Tapponnier, P., Warsi, W. E. K. and Wu, T. (1977) Structure and tectonics of Himalaya: a brief summary of relevant geophysical observations. Colloques. Internationaux du CNRS, Ecologie et Geologic de Himalaya, v.268, pp.269–295. (http://www.colorado.edu/geolsci/faculty/molnarpdf/1977Molnar-etal.HimalayaReview.pdf)Google Scholar
  24. Molnar, P. and Tapponnier, P. (1975) Cenozoic tectonics of Asia: Effects of a continental collision. Science, v.189, pp.419–426.CrossRefGoogle Scholar
  25. Mundepi, A.K. and Kamal (2006) Effective soft sediment thickness in Dehradun city (India) using ground ambient vibrations. Himalayan Geol., v.27(2), pp.183–188.Google Scholar
  26. Mundepi, A. K., Kamal and Paul, A. K. (2007) Estimation of site amplitude at various litho-units in NW Himalaya using horizontal to vertical ratio. Jour. Geol Soc. India, v.70, pp.605–609.Google Scholar
  27. Mundepi, A. K. (2008) Site response studies using horizontal to vertical ratio (H/V) in the city of Chandigarh, North India. HHimalayan Geol., v.29(1), pp.87–93.Google Scholar
  28. Mundepi, A.K., Galiana-Merino, J.J., Asthana, A.K.L. and Rosa-Cintras, S. (2015) Soil characteristics in Doon Valley (North West Himalaya, India) by inversion of H/V spectral ratios from ambient noise measurements. Soil Dyna. Earthquake Engg., v.77, pp.309–320.CrossRefGoogle Scholar
  29. Nakamura, Y. (1989) A method for dynamic characteristics estimation of sub surface using micro tremor on the ground surface. Quarterly Report of Railway Technical Research Institute, v.30, pp.250–363.Google Scholar
  30. Nakamura, Y. (1996) Real time information systems for seismic hazards mitigation Ur DAS, HERAS and PIC. Quarterly Reports of Railway Technical Research Institute, v.37, pp.112–127.Google Scholar
  31. Nakamura, Y. (2000) Clear identification of fundamental idea Nakamura’s technique and its applications. Proceeding of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, pp.2656–2666.Google Scholar
  32. Nakamura, Y. (2009) Basic Structure of QTS (HVSR) and Examples of Applications. In: Mucciarelli, M., Herak, M., Cassidy, J. (Eds.), Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, DOI: 10.1007/978-1-4020-9196-4.Google Scholar
  33. Nakata, T., Otsuki, K. and Khan, S. H. (1990) Active faults, stress field and plate motion along the Indo-Eurasian plate boundary. Tectonophysics, v.181, pp.83–95.CrossRefGoogle Scholar
  34. Ni, J. and Barazangi, M. (1984) Seismotectinics of the Himalayan collision zone: Geometry of underthrusting Indian plate beneath the Himalaya. Jour. Geophys. Res., v.89, pp.1147–1163.CrossRefGoogle Scholar
  35. Nogoshi, M. and Igarashi, T. (1971) On the amplitude characteristics of microtremor, Part 2, Jour. Seismol. Soc. Japan, v.24, pp.26–40.Google Scholar
  36. Pal, S. K. and Majumdar, T. J. (2015) Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data. International Jour. Appld. Earth Observation and Geoinformation, v.35, pp.96–119.CrossRefGoogle Scholar
  37. Pal, S.K., Majumdar, T.J., Pathak, V.K., Narayan, S., Kumar. U. and Goswami, O.P. (2016) Utilization of high-resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Internat., v.31(7), pp.783–802.CrossRefGoogle Scholar
  38. Pandey, M. R. and Molnar, P. (1988) The distribution of intensity of the Bihar-Nepal earthquake of 15th January 1934 and bounds on the extent of the rupture zone. Jour. Geol. Soc. Nepal, v.5, pp.22–44.Google Scholar
  39. Pandey, Y., Dharmaraju, R. and Chauhan, P. K. S. (2001). Estimation of source parameters of Chamoli Earthquake, India. Jour. Earth System Sci, v.110, pp.171–177.CrossRefGoogle Scholar
  40. Parvez, I. A., Vaccari, F. and Panza, G. F. (2004). Site-specific micro-zonation study in Delhi Metropolitan City by 2-D modelling of SH and P-SV waves. Pure Appld. Geophys., v.161, pp.1165–1184.CrossRefGoogle Scholar
  41. Peltzer, G. and Saucier, F. (1996) Present day kinemetrics of Asia derived from geologic fault rates. Jour. Geophys. Res., v.101, pp.27943–27956.CrossRefGoogle Scholar
  42. Sanchez-Sesma, F. J. (1996) Strong ground motion and site effects. In Computer Analysis and Earthquake resistant Structures (D. E. Beskos and S. A. Anagnostopoulos, eds.), Computational Mechanics Publications, Southampton, pp.200–229.Google Scholar
  43. Sathyaseelan, R., Mundepi, A. K and Kumar, N. (2017) Quantifying seismic vulnerability, dynamical shear strain and liquefaction of the Quaternary deposits in the Doon valley near the Main Boundary Thrust in the Northwest Himalaya, India. Quaternary International, DOI: 10.1016/j.quaint.2017.05.018Google Scholar
  44. Scott, J. B., Rasmussen, T., Luke, B., Taylor, W. J., Wagoner, J. L., Smith, S. B. and Louie, J. N. (2006) Shallow shear velocity and seismic microzonation of the Urban Las Vegas, Nevada, Basin. Bull. of the Seismo. Soc. of Amer., v.96(3), pp.1068–1077.CrossRefGoogle Scholar
  45. Seeber, L. and Armbruster, J. G. (1981) Great detachment earthquakes along the Himalayan arc and long term forecasting. In: Earthquake prediction: an international review. Maurice Ewing Service, Washington, D.C., v.4. pp.265–272.Google Scholar
  46. Steidl, J. (1993) Variation of site response at the UCSB dense array of portable accelerometers. Earthquake Spectra, v.9, pp.289–302.CrossRefGoogle Scholar
  47. Tandon, A.N. (1975) Some typical earthquakes of north and west Uttar Pradesh. Bull. Indian Soc. Earthquake Tech., v.12, pp.74–88.Google Scholar
  48. Thaku, V.C. and Kumar, S. (1994) Seismotectonics of the 20 October 1991 Uttarkashi earthquake in Garhwal, Himalaya, North India. Terra Nova, v.6, pp.90–94.CrossRefGoogle Scholar
  49. Triantafyllidis, P., Hatzidimitriou, P. M. and Suhadolc, P. (2001) 1-D Theoretical modeling for site effect estimations in Thessaloniki: Comparison with observations. Pure Appld. Geophys., v.158, pp.2333–2347.CrossRefGoogle Scholar
  50. Valdiya, K.S. (1980) The two intra-crustal boundary thrusts of the Himalaya. Tectonophysics, v.66, pp.323–348.CrossRefGoogle Scholar
  51. Verma, R. K., Roonwal, G. S., Kamble, V. P., Dutta, U., Kumar, N., Gupta, T. and Sood, S. (1995) Seismicity of northwestern part of the Himalaya Arc, Delhi-Haridwar ridge and Garhwal–Kumaun Himalaya region: a synthesis of existing data. Mem. Geol. Soc. India no.30, pp.83–99.Google Scholar
  52. Yeats, R. S. and Thakur, V.C. (1998) Reassessment of earthquake hazards based on a fault bend fold model of the Himalayan plate boundary fault. Curr. Sci., v.74, pp.230–233.Google Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • Rajesh Sathyaseelan
    • 1
  • John P. Pappachen
    • 1
  • Anil K. Mundepi
    • 2
  1. 1.Wadia Institute of Himalayan GeologyDehradunIndia
  2. 2.Panditwari, DehradunIndia

Personalised recommendations