Skip to main content
Log in

Fractal Analysis of In Situ Host Rock Nepheline Syenite Xenoliths in a Micro-Shonkinite Dyke (The Elchuru Alkaline Complex, SE India)

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Formation of the fragments of the wall-rock during dyking is one of the important manifestations of instantaneous magmatic events. This process is well documented at shallower depths of Earth’s crust but not at deeper levels. In this paper the in situ xenoliths of host rock nepheline syenite within a micro-shonkinite dyke emplaced at mid-crustal depths is described and the fractal theory applied to evaluate origin of the xenoliths. The nepheline syenite xenoliths are angular to oval shaped and sub-millimetre to ~50 cm long. The xenoliths are matrix supported with clasts and matrix being in equal proportions. Partly detached wall-rock fragments indicate incipient xenolith formation, which suggested that the model fragmentation processes is solely due to dyke emplacement. Fractal analytical techniques including clast size distribution, boundary roughness fractal dimension and clast circularity was carried out. The fractal data suggests that hydraulic (tensile) fracturing is the main process of host rock brecciation. However, the clast size and shape are further affected by postfragmentation processes including shear and thermal fracturing, and chemical erosion. The study demonstrates that dyking in an isotropic medium produces fractal size distributions of host rock xenoliths; however, post-fragmentation processes modify original fractal size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre, C.J., Le Mouel, J.L. and Provost. A (1982) Scaling rules in fracture and possible implications for earthquake predications. Nature, v.297, pp.47–49.

    Article  Google Scholar 

  • Bailey, D.K. (1985) Fluids, Melts, flowage and style of eruption in alkaline ultramafic magmatism. Trans. Geol. Soc. South Africa, v.88, pp.449–457.

    Google Scholar 

  • Bérubé, D. and Jebrak, M. (1999) High precision boundary fractal analysis for shape characterization. Comp. & Geosci., v.25, pp.1059–1071.

    Article  Google Scholar 

  • Bérubé, D. and Jebrak, M. (1996) High precision boundary fractal analysis for shape characterization. Comp. & Geosci., v.25, pp.1059–1071.

    Article  Google Scholar 

  • Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and Berkowitz, B. (2001) Scaling of fracture systems in geological media. Rev. Geophys., v.39, pp.347–383.

    Article  Google Scholar 

  • Bryant, B.G. (1968) Intrusive breccias associated with ore, warren (Bisbee) mining district Arizona. Econ. Geol., v.63, pp.1–12.

    Article  Google Scholar 

  • Burnham, C.W. (1985) Energy release in subvolcanic environments: implications for breccias formation. Econ. Geol., v.80, pp.1515–1522.

    Article  Google Scholar 

  • Carreras, J., Czeck, D.M., Druguet, E. and Hudleston, P.J. (2010) Structure and development of an anastomosing network of ductile shear zones. Jour. Struct. Geol., v.32, pp.656–666.

    Article  Google Scholar 

  • Cello, G. (1997) Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Jour. Struct. Geol., v.19, pp.945–953.

    Article  Google Scholar 

  • Cladouhos, T. and Marrett, R. (1996) Are fault growth and linkage models consistent with power-law distribution of fault length? Jour. Struct. Geol., v.18, pp.281–293.

    Article  Google Scholar 

  • Clark, R.M. and Cox, S.J.D. (1996) A modern regression approaches to determining fault displacement–length scaling relationships. Jour. Struct. Geol., v.18, pp.147–152.

    Article  Google Scholar 

  • Clarke. D.B., Henry, A.S. and White, M.A. (1998) Exploding xenoliths and the absence of “elephents graveyards” in granite batholiths. Jour. Struct. Geol., v.20, pp.1325–1343.

    Article  Google Scholar 

  • Cowie, P.A. and Scholz, C.H. (1992) Physical explanation for displacement–length relationship of faults using a post-yield fracture mechanics model. Jour. Struct. Geol., v.14, pp.1133–1148.

    Article  Google Scholar 

  • Delaney, P.T., Pollard, D.D. (1981) Deformation of host rocks and flow of magma during growth of the minette dikes and breccias bearing intrusions near ship rock, New Mexico. Professional Paper U.S. Geol. Surv., 1202p.

    Google Scholar 

  • Delaney, P.T., Pollard, D.D., Ziony, J.I. and Mckee, E.H. (1986) Field relations between dikes and joints: Emplacement processes and paleostress analysis. Jour. Geophy. Res, v.91, pp.4920–4928.

    Article  Google Scholar 

  • Dellino, P. and Liotino, G. (2002) The fractal and multifractal dimensions of volcanic ash of volcanic particles contour: a test study on the utility and volcanological relevance. Jour. Volcanol. Geotherm. Res., v.113, pp.1–18.

    Article  Google Scholar 

  • Donnison, J.R. and Sugden, R.A. (1984) The distribution of asteroid diameters. Mon. Not. R. Astronomical Soc., v.210, pp.673–682

    Article  Google Scholar 

  • Farris, D W. and Paterson, S.R. (2007) Contamination of silicic magmas and fractal fragmentation of xenoliths in Paleocene plutons on Kodiak Island, Alaska. Can. Mineral., v.45, pp.107–129.

    Article  Google Scholar 

  • Ferreira, V.P., Sial, A.N., Weinberg, R.F. and Pimentel, M.M. (2015) Deepseated fragmentation, transport of breccias dikes and emplacement: An example from the Borborema province, northeastern Brazil. Jour. S. Amer. Earth. Sci., v.58, pp.300–308.

    Article  Google Scholar 

  • Furlong, K.P. and Myers, J.D. (1985) Thermal-Mechanical modeling of the role of thermal stress and stoping in magma contamination. Jour. Volcanol. Geotherm., Res., v.24, pp.179–191.

    Article  Google Scholar 

  • Gates, K. (2015) A quantitative analysis of xenolith fragmentation and incorporation in magma. M.Sc thesis (unpublished) Texas Tech University, 210p.

    Google Scholar 

  • Glazner, A.F. and Bartley, J.M. (2006) Is stoping a volumetrically significant pluton emplacement processes? Geol. Soc. Amer. Bull., v.118, pp.1185–1195.

    Article  Google Scholar 

  • Gonnermann, H.M. and Manga, M. (2005) Flow banding in obsidian: A record of evolving textural heterogeneity during magma deformation. Earth Planet. Sci. Lett., v.236, pp.135–147

    Article  Google Scholar 

  • Green, N. L. (1994) Mechanism for middle to upper crustal contamination: Evidence from continental-margin magma. Geology, v.22, pp.231–234.

    Article  Google Scholar 

  • Gross, M.R., Gutierrez-Alonso, G., Bai, T., Wacker, M.A. and Collinsworth, K.B. (1997) Influence of mechanical stratigraphy and kinematics on fault scaling relations. Jour. Struct. Geol., v.19, pp.171–183.

    Article  Google Scholar 

  • Gudmundsson, A. (2004) Effects of mechanical layering on the development of normal faults and dikes in Iceland. Geodin. Acta. v.18, pp.11–30.

    Article  Google Scholar 

  • Hodge, K.F. and Jellinek, A.M. (2012) Linking enclave formation to magma rheology. Jour. Geophys. Res. B117, B10208, Doi: 1029/2012JB009393.

    Google Scholar 

  • Holtz, F., Lenne, S., Vetere, F. and Wolf, P. (2004) Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (southern Italy), Geophys. Res. Lett., v.31, pp.L24611.

    Article  Google Scholar 

  • Jebrak, M. (1997) Hydrothermal breccias in vein–type ore deposits: A review of mechanisms, morphology and size distribution. Ore. Geol. Rev., v.12, pp.111–134.

    Article  Google Scholar 

  • Johnson, A.M. and Pollard, D.D. (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I: Field observations, Gilbert’s model, physical properties and flows of the magma. Tecnophysics, v.18, pp.261–309.

    Article  Google Scholar 

  • Klausen, M.B. (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. Jour. Volcanol. Geotherm. Res., v.138, pp.185–204.

    Article  Google Scholar 

  • Knott, S.D., Beach, A., Brockbank, P.J., Lawson B.J., McCallum, J.E. and Welbon, A.I. (1996) Spatial and mechanical controls on normal fault populations. Jour. Struct. Geol., v.18, pp.359–372.

    Article  Google Scholar 

  • Korvin, G. (1992) Fractal models in the Earth Sciences. Elsevier, New York, pp.191–230.

    Google Scholar 

  • Lange, M.A., Ahrens, T.J. and Boslough, M.B. (1984) Impact cratering and spall failure of gabbro. Icarus., v.58, pp.383–395.

    Article  Google Scholar 

  • Leelanandam, C. (1989) The Prakasam alkaline province in Andhra Pradesh, India. Jour. Geol. Soc. India, v.34, pp.25–45.

    Google Scholar 

  • Lorilleux, G., Jebrak, M., Cuney, M. and Baudemont, D. (2002) Polyphase hydrothermal breccias associated with unconformity–related uranium mineralization (Canada): From fractal analysis to structural significance. Jour. Struct. Geol., v.24, pp.323–338.

    Article  Google Scholar 

  • Maaloe, S. (1987) The generation and shape of feeder dykes from mantle sources. Contrib. Mineral. Petrol., v.96, pp.47–55.

    Article  Google Scholar 

  • Madhavan, V. and Leelanandam, C. (1988) Petrology of the Elchuru alkaline pluton, Prakasam District, Andhra Pradesh, India. Jour. Geol. Soc. India., v.31, pp.515–537.

    Google Scholar 

  • Madhavan, V., Mallikarjun Rao, J., Subrahmanyam, K., Krishna, S.G. and Leelanandam. C. (1989) Bedrock geology of Elchuru alkaline pluton, Prakasam district, Andhra Pradesh. In: Leelanandam, C. (Ed.), Alkaline Rocks. Mem. Geol. Soc India, no.15, pp.189–205.

    Google Scholar 

  • Madhavan, V., Rao, J.M., Balaram, V. and Ramesh Kumar. (1992) Geochemistry and petrogenesis of lamprophyres and associated dykes from Elchuru, Andhra Pradesh, India. Jour. Geol. Soc. India, v.40, pp.135–149.

    Google Scholar 

  • Mancktelow, N.S. (2002) Finite-element modelling of shear zone development in viscoelastic materials and its implications for localization of partial melting. Jour. Struct. Geol., v.24, pp.1045–1053.

    Article  Google Scholar 

  • Mandal, N., Mitra, A.K., Misra, S. and Chakraborty, C. (2006) Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? Jour. Earth Syst. Sci., v.115, pp.643–660.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1967) How long is the coast of Britain? Statistical self–similarity and fractional dimension. Science, v.156, pp.636–638.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1983) The fractal geometry of nature. San Francisco, W.H. Freeman.

    Google Scholar 

  • Marko, W.T., Barnes, C.G., Yoshinobu., A.S., Frost, C.D. and Nordgulen, O. (2013) Geology, geochemistry, and emplacement conditions of the Vega intrusive complex; an example of large–scale crustal anatexis in north–central Norway: Geol. Soc. London Spec. Publ., v.390, pp.603–631.

    Article  Google Scholar 

  • Marko, W., Barnes, L., Vietti, L., McCulloch, L., Anderson, H., Barnes, C. and Yoshinobu, A. (2005) Xenolith incorporation, distribution, and dissemination in a mid–crustal granodiorite, Vega pluton, Central Norway, Eos Trans. AGU, 86, Fall Meet. Suppl., Abstract V13E–0596.

    Google Scholar 

  • Marrett, R. and Allemendinger, R.W. (1991) Estimate of strain due to brittle faulting: Sampling of fault populations. Jour. Struct. Geol., v.13, pp.735–738.

    Article  Google Scholar 

  • Marsh, B.D. (1982) On the mechanics of igneous diapirism, stoping and zone melting. Amer. Jour. Sci., v.282, pp.808–855.

    Article  Google Scholar 

  • Matsushita, M., Hayakawa, Y. and Sawada, Y. (1985) Fractal structure and cluster statistics of Zinc-metal trees de-posited on a line electrode. Phys. Rev. A., v.32, pp.3814–3816.

    Article  Google Scholar 

  • McBirney, A.R. (1959) Factors governing emplacement of volcanic necks. Amer. Jour. Sci., v.257, pp.431–448.

    Google Scholar 

  • Mitchell, R.H. (1986) Kimberlites: Mineralogy, geochemistry and petrology. Plenum, New York.

    Book  Google Scholar 

  • Mitra, G. (1979) Ductile deformation zones in Blue ridge basement rocks and estimation of finite strain. Geol. Soc. Amer. Bull., v.90, pp.935–951.

    Article  Google Scholar 

  • Morin, D., and Corriveau, L. (1996) Fragmentation processes and xenoliths transport in a Proterozoic minette dyke, Grenville Province, Quebec. Contrib. Mineral. Petrol., v.125, pp.319–331.

    Article  Google Scholar 

  • Nicol, A., Walsh, J.J, Waterson, J. and Gillespie, P.A. (1996) Fault size distribution-are they really power-law? Jour. Struct. Geol., v.18, pp.191–197.

    Article  Google Scholar 

  • Parkar, A.J., Rickwood, P.C. and Tucker, D.H. (1990) Mafic dykes and emplacement mechanisms. Proceedings of the second International dyke conference, Adelaide, South Australia, v.23, pp.421–430.

    Google Scholar 

  • Perfect, E. (1997) Fractal models for the fragmentation of rocks and soils: a review. Engg. Geol., v.48, pp.185–198.

    Article  Google Scholar 

  • Perugini, D. and Poli, G. (2000) Chaotic dynamic fractals in magmatic interactions processes: a different approach to the interpretation of mafic microgranular enclaves. Earth Planet. Sci. Lett., v.175, pp.91–103.

    Google Scholar 

  • Perugini, D., Speziali, A., Caricchi, L. and Kueppers, U. (2011) Application of fractal fragmentation theory to natural pyroclastic deposits; Insights into volcanic explosivity of the valentano scoria cone (Italy). Jour. Volcanol. Geotherm. Res., v.202, pp.200–210.

    Article  Google Scholar 

  • Perugini, D., Valentini, L. and Poli, G. (2007) Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (southern Italy). Jour. Volcanol. Geotherm. Res., v.166, pp.193–203.

    Article  Google Scholar 

  • Pickering, G., Bull, J.M. and Sanderson, D.J. (1995) Sampling power-law distributions. Tectonophysics, v.248, pp.205–226.

    Article  Google Scholar 

  • Platten, M. (1982) A late Caledonian breccia dyke swarm in Glen Creran, near Glen Coe in Grampian Highlands. Geol. Magz., v.119, pp.169–180.

    Article  Google Scholar 

  • Pollard, D.D. (1987) Elementary fracture mechanics applied to the structural interpretation of dykes. In: Halls and W.F. Fahrig (Eds.), Mafic Dyke Swarms, Geological Association of Canada Special Paper, v.34, pp.5–24.

    Google Scholar 

  • Poulimenos, G. (2000) Scaling properties of normal fault populations in the western Corinth Graben, Greece: Implications for fault growth in large strain settings. Jour. Struct. Geol., v.22, pp.307–322.

    Article  Google Scholar 

  • Rao, A.D.P., Rao, K.N. and Murthy, Y.G.K. (1987) Gabbro-anorthositepyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam District, Andhra Pradesh. Rec. Geol. Surv. India, v.116, pp.1–20.

    Google Scholar 

  • Rathna, K., Vijaya Kumar, K. and Ratnakar, J. (2000) Petrology of the dykes of Ravipadu, Prakasam Province, Andhra Pradesh, India. Jour. Geol. Soc. India., v.55, pp.339–412.

    Google Scholar 

  • Ratnakar, J. and Leelanandam, C. (1989) Petrology of alkaline plutons from the eastern and southern Peninsular India. Mem. Geol. Soc. India., no.15, pp.145–176.

    Google Scholar 

  • Ren, X., Kowallis, B.J. and Best, M.G. (1989) Palaeostress history of the Basin and Range province in western Utah and eastern Nevada from healed microcrack orientations in granites. Geology, v.17, pp.487–490.

    Article  Google Scholar 

  • Rickwood, P.C. (1990) The anatomy of a dyke and the determination of propagation and flow directions, In: A. J. Parker, P. C. Rickwood and D.H. Tucker (Eds.), Mafic dykes and Emplacement Mechanisms, Proceedings of the 2nd International Dyke Conference, Balkema Press, Rotterdam, The Netherlands. pp.81–100.

    Google Scholar 

  • Rothrock, D.A. and Thorndike, A.S. (1984) Measuring of the sea ice floe size distributions. Jour. Geophys. Res., v.89, pp.6477–6486.

    Article  Google Scholar 

  • Roy, S.G., Johnson, S.E, Koons, P.O. and Jin, Z. (2012) Fractal analysis and thermal-elastic modeling of a subvolcanic magmatic breccia: The role of post-fragmentation partial melting and thermal fracture in clast size distributions. Geochem.Geophys.Geosyst., v.13, Q05009, doi:10.1029/2011GC004018.

    Article  Google Scholar 

  • Rubin, A.M. (1995) Propagation of magma filled cracks. Ann. Rev. Earth Planet. Sci., v.23, pp.287–336.

    Article  Google Scholar 

  • Rubin, A.M. (1993) Tensile fracture of rocks at high confining pressure: implications for dyke propagation. Jour. Geophys. Res, v.98, pp.15915–15935.

    Article  Google Scholar 

  • Russ, J.C. (1995) The image processing handbook. Boca Raton, FL: CRC.

    Google Scholar 

  • Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M. and White, P. (1986) Self–similar cataclasis in the formation of fault gouge. Pure Appl. Geophys., v.124, pp.53–78.

    Article  Google Scholar 

  • Sarkar, A. and Paul, D.K. (1998) Geochronology of the Eastern Ghats Precambrian Mobile Belts–a review. Geol. Sur. India. Spec. Publ., v.44, pp.51–86.

    Google Scholar 

  • Schlische, R.W., Young, S.S., Ackermann, R.V. and Gupta, A. (1996) Geometry and scaling relations of a population of very small rift-related normal faults. Geology. v.24, pp.683–686.

    Article  Google Scholar 

  • Schoutens, J.E. (1979) Empirical analysis of nuclear and high-explosive cratering and ejecta. Nuclear Geoplosics Sourcebook, v.55, part 2, section 4, Rep.DNA OIH–4–2, Def. Nuclear Agency, Bethesda, MD.

  • Sillitoe, R.H. (1985) Ore-related rupturing. Pure. Appld. Geophys., v.124, pp.159–174.

    Google Scholar 

  • Spera, F.J. (1984) Carbon dioxide in petrogenesis III: Role of volatiles in the ascent of alkaline magma with special reference to xenoliths-bearing mafic lavas. Contrib. Mineral. Petrol., v.88, pp.217–232.

    Article  Google Scholar 

  • Storti, F., Billi, A. and Salvini, F. (2003) Particle size distribution in natural carbonate fault rocks: insight for non–self-similar cataclasis. Earth Planet. Sci. Lett., v.206, pp.173–186.

    Article  Google Scholar 

  • Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V and Gopalan, K. (1989) Rb-Sr age and petrology of Elchuru alkaline complex: implications to alkaline magmatism in the Eastern Ghat Mobile Belt. In: Alkaline Rocks, Leelanadam, C. (Ed.), Mem. Geol. Soc. India., no.15, pp.207–223.

    Google Scholar 

  • Turcotte, D. L. (1986) Fractals and fragmentation. Jour. Geophys. Res., v.91, pp.1921–1926.

    Article  Google Scholar 

  • Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschmidt, K. (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos, v.89, pp.447–477.

    Article  Google Scholar 

  • Van Dijk, J.P., Bello, M., Toscano, C., Bersani, A. and Nardon, S. (2000) Tectonic model and three-dimensional fracture network analysis of Monte Alpi (Southern Apennines). Tectonophysics, v.324, pp.203–237.

    Article  Google Scholar 

  • Ventura, G., Gaudio, P.D. and Iezzi, G. (2006) Enclaves provide new insights on the dynamics of magma mingling: A case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth Planet. Sci. Lett., v.243, pp.128–140.

    Article  Google Scholar 

  • Vijaya Kumar, K. and Leelanandam, C. (2008) Evolution of the Eastern Ghats Belts, India: A plate tectonic perspective. Jour. Geol. Soc. India., v.50, pp.641–644.

    Google Scholar 

  • Vijaya Kumar, K. and Ratnakar, J. (2001) Petrogenesis of the Ravipadu gabbro pluton, Prakasam Alkaline Province, Andhra Pradesh. Jour. Geol. Soc. India., v.57, pp.113–140.

    Google Scholar 

  • Vijaya Kumar, K., Ernst, W.G., Leelanandam, C., Wooden, J.L., Grove, M.J. (2011) Origin of ~2.5 Ga potassic granite from the Nellore Schist Belt, SE India: textural, cathodoluminescence, and SHRIMP U–Pb data. Contrib. Mineral. Petrol., v.162, pp.867–888.

    Article  Google Scholar 

  • Vijaya Kumar, K., Frost, C.D., Frost, B.R. and Chamberlain, K.R. (2007) The Chimakurthi, Errakonda, and Upplapadu plutons, Eastern Ghats Belts, India: An unusual association of tholeiitic and alkaline magmatism. Lithos., v.97, pp.30–57.

    Article  Google Scholar 

  • Volland, S. and Kruhl, J.K. (2004) Anisotropy quantification: the application of fractals geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW-Sardinia. Jour. Struct. Geol., v.26, pp.1489–1500.

    Article  Google Scholar 

  • Walsh, J.J. and Watterson, J. (1992) Populations of faults and fault displacement and their effects on estimates of fault-related regions extension. Jour. Struct. Geol., v.14, pp.701–712

    Article  Google Scholar 

  • Wolak, J., Yoshinobu, A.S. and Barnes, C.G. (2005) Xenoliths, foliations and folds in a big tank filled by many small increments. Geol. Soc. Amer. Abstracts with Programs, v.37, pp.71.

    Google Scholar 

  • Wyllie, P.J. (1980) The origin of kimberlites. Jour. Geophy. Res., v.85, pp.6902–6910.

    Article  Google Scholar 

  • Yoshinobu, A.S. and Barnes, C.G. (2008) Is stoping a volumetrically significant pluton emplacement process? Discussion. Geol. Soc. Amer., v.120, pp.1080–1081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijaya Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, B., Ghodke, S.S., Rathna, K. et al. Fractal Analysis of In Situ Host Rock Nepheline Syenite Xenoliths in a Micro-Shonkinite Dyke (The Elchuru Alkaline Complex, SE India). J Geol Soc India 91, 263–272 (2018). https://doi.org/10.1007/s12594-018-0849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0849-2

Navigation