Advertisement

Journal of the Geological Society of India

, Volume 91, Issue 3, pp 263–272 | Cite as

Fractal Analysis of In Situ Host Rock Nepheline Syenite Xenoliths in a Micro-Shonkinite Dyke (The Elchuru Alkaline Complex, SE India)

  • B. Nagaraju
  • Sachin S. Ghodke
  • K. Rathna
  • Gaurav J. Kokandakar
  • Laxman B. More
  • Munjaji V. Bhosle
  • K. Vijaya Kumar
Research Articles
  • 57 Downloads

Abstract

Formation of the fragments of the wall-rock during dyking is one of the important manifestations of instantaneous magmatic events. This process is well documented at shallower depths of Earth’s crust but not at deeper levels. In this paper the in situ xenoliths of host rock nepheline syenite within a micro-shonkinite dyke emplaced at mid-crustal depths is described and the fractal theory applied to evaluate origin of the xenoliths. The nepheline syenite xenoliths are angular to oval shaped and sub-millimetre to ~50 cm long. The xenoliths are matrix supported with clasts and matrix being in equal proportions. Partly detached wall-rock fragments indicate incipient xenolith formation, which suggested that the model fragmentation processes is solely due to dyke emplacement. Fractal analytical techniques including clast size distribution, boundary roughness fractal dimension and clast circularity was carried out. The fractal data suggests that hydraulic (tensile) fracturing is the main process of host rock brecciation. However, the clast size and shape are further affected by postfragmentation processes including shear and thermal fracturing, and chemical erosion. The study demonstrates that dyking in an isotropic medium produces fractal size distributions of host rock xenoliths; however, post-fragmentation processes modify original fractal size distributions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegre, C.J., Le Mouel, J.L. and Provost. A (1982) Scaling rules in fracture and possible implications for earthquake predications. Nature, v.297, pp.47–49.CrossRefGoogle Scholar
  2. Bailey, D.K. (1985) Fluids, Melts, flowage and style of eruption in alkaline ultramafic magmatism. Trans. Geol. Soc. South Africa, v.88, pp.449–457.Google Scholar
  3. Bérubé, D. and Jebrak, M. (1999) High precision boundary fractal analysis for shape characterization. Comp. & Geosci., v.25, pp.1059–1071.CrossRefGoogle Scholar
  4. Bérubé, D. and Jebrak, M. (1996) High precision boundary fractal analysis for shape characterization. Comp. & Geosci., v.25, pp.1059–1071.CrossRefGoogle Scholar
  5. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and Berkowitz, B. (2001) Scaling of fracture systems in geological media. Rev. Geophys., v.39, pp.347–383.CrossRefGoogle Scholar
  6. Bryant, B.G. (1968) Intrusive breccias associated with ore, warren (Bisbee) mining district Arizona. Econ. Geol., v.63, pp.1–12.CrossRefGoogle Scholar
  7. Burnham, C.W. (1985) Energy release in subvolcanic environments: implications for breccias formation. Econ. Geol., v.80, pp.1515–1522.CrossRefGoogle Scholar
  8. Carreras, J., Czeck, D.M., Druguet, E. and Hudleston, P.J. (2010) Structure and development of an anastomosing network of ductile shear zones. Jour. Struct. Geol., v.32, pp.656–666.CrossRefGoogle Scholar
  9. Cello, G. (1997) Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Jour. Struct. Geol., v.19, pp.945–953.CrossRefGoogle Scholar
  10. Cladouhos, T. and Marrett, R. (1996) Are fault growth and linkage models consistent with power-law distribution of fault length? Jour. Struct. Geol., v.18, pp.281–293.CrossRefGoogle Scholar
  11. Clark, R.M. and Cox, S.J.D. (1996) A modern regression approaches to determining fault displacement–length scaling relationships. Jour. Struct. Geol., v.18, pp.147–152.CrossRefGoogle Scholar
  12. Clarke. D.B., Henry, A.S. and White, M.A. (1998) Exploding xenoliths and the absence of “elephents graveyards” in granite batholiths. Jour. Struct. Geol., v.20, pp.1325–1343.CrossRefGoogle Scholar
  13. Cowie, P.A. and Scholz, C.H. (1992) Physical explanation for displacement–length relationship of faults using a post-yield fracture mechanics model. Jour. Struct. Geol., v.14, pp.1133–1148.CrossRefGoogle Scholar
  14. Delaney, P.T., Pollard, D.D. (1981) Deformation of host rocks and flow of magma during growth of the minette dikes and breccias bearing intrusions near ship rock, New Mexico. Professional Paper U.S. Geol. Surv., 1202p.Google Scholar
  15. Delaney, P.T., Pollard, D.D., Ziony, J.I. and Mckee, E.H. (1986) Field relations between dikes and joints: Emplacement processes and paleostress analysis. Jour. Geophy. Res, v.91, pp.4920–4928.CrossRefGoogle Scholar
  16. Dellino, P. and Liotino, G. (2002) The fractal and multifractal dimensions of volcanic ash of volcanic particles contour: a test study on the utility and volcanological relevance. Jour. Volcanol. Geotherm. Res., v.113, pp.1–18.CrossRefGoogle Scholar
  17. Donnison, J.R. and Sugden, R.A. (1984) The distribution of asteroid diameters. Mon. Not. R. Astronomical Soc., v.210, pp.673–682CrossRefGoogle Scholar
  18. Farris, D W. and Paterson, S.R. (2007) Contamination of silicic magmas and fractal fragmentation of xenoliths in Paleocene plutons on Kodiak Island, Alaska. Can. Mineral., v.45, pp.107–129.CrossRefGoogle Scholar
  19. Ferreira, V.P., Sial, A.N., Weinberg, R.F. and Pimentel, M.M. (2015) Deepseated fragmentation, transport of breccias dikes and emplacement: An example from the Borborema province, northeastern Brazil. Jour. S. Amer. Earth. Sci., v.58, pp.300–308.CrossRefGoogle Scholar
  20. Furlong, K.P. and Myers, J.D. (1985) Thermal-Mechanical modeling of the role of thermal stress and stoping in magma contamination. Jour. Volcanol. Geotherm., Res., v.24, pp.179–191.CrossRefGoogle Scholar
  21. Gates, K. (2015) A quantitative analysis of xenolith fragmentation and incorporation in magma. M.Sc thesis (unpublished) Texas Tech University, 210p.Google Scholar
  22. Glazner, A.F. and Bartley, J.M. (2006) Is stoping a volumetrically significant pluton emplacement processes? Geol. Soc. Amer. Bull., v.118, pp.1185–1195.CrossRefGoogle Scholar
  23. Gonnermann, H.M. and Manga, M. (2005) Flow banding in obsidian: A record of evolving textural heterogeneity during magma deformation. Earth Planet. Sci. Lett., v.236, pp.135–147CrossRefGoogle Scholar
  24. Green, N. L. (1994) Mechanism for middle to upper crustal contamination: Evidence from continental-margin magma. Geology, v.22, pp.231–234.CrossRefGoogle Scholar
  25. Gross, M.R., Gutierrez-Alonso, G., Bai, T., Wacker, M.A. and Collinsworth, K.B. (1997) Influence of mechanical stratigraphy and kinematics on fault scaling relations. Jour. Struct. Geol., v.19, pp.171–183.CrossRefGoogle Scholar
  26. Gudmundsson, A. (2004) Effects of mechanical layering on the development of normal faults and dikes in Iceland. Geodin. Acta. v.18, pp.11–30.CrossRefGoogle Scholar
  27. Hodge, K.F. and Jellinek, A.M. (2012) Linking enclave formation to magma rheology. Jour. Geophys. Res. B117, B10208, Doi: 1029/2012JB009393.Google Scholar
  28. Holtz, F., Lenne, S., Vetere, F. and Wolf, P. (2004) Non-linear deformation and break up of enclaves in a rhyolitic magma: A case study from Lipari Island (southern Italy), Geophys. Res. Lett., v.31, pp.L24611.CrossRefGoogle Scholar
  29. Jebrak, M. (1997) Hydrothermal breccias in vein–type ore deposits: A review of mechanisms, morphology and size distribution. Ore. Geol. Rev., v.12, pp.111–134.CrossRefGoogle Scholar
  30. Johnson, A.M. and Pollard, D.D. (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I: Field observations, Gilbert’s model, physical properties and flows of the magma. Tecnophysics, v.18, pp.261–309.CrossRefGoogle Scholar
  31. Klausen, M.B. (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. Jour. Volcanol. Geotherm. Res., v.138, pp.185–204.CrossRefGoogle Scholar
  32. Knott, S.D., Beach, A., Brockbank, P.J., Lawson B.J., McCallum, J.E. and Welbon, A.I. (1996) Spatial and mechanical controls on normal fault populations. Jour. Struct. Geol., v.18, pp.359–372.CrossRefGoogle Scholar
  33. Korvin, G. (1992) Fractal models in the Earth Sciences. Elsevier, New York, pp.191–230.Google Scholar
  34. Lange, M.A., Ahrens, T.J. and Boslough, M.B. (1984) Impact cratering and spall failure of gabbro. Icarus., v.58, pp.383–395.CrossRefGoogle Scholar
  35. Leelanandam, C. (1989) The Prakasam alkaline province in Andhra Pradesh, India. Jour. Geol. Soc. India, v.34, pp.25–45.Google Scholar
  36. Lorilleux, G., Jebrak, M., Cuney, M. and Baudemont, D. (2002) Polyphase hydrothermal breccias associated with unconformity–related uranium mineralization (Canada): From fractal analysis to structural significance. Jour. Struct. Geol., v.24, pp.323–338.CrossRefGoogle Scholar
  37. Maaloe, S. (1987) The generation and shape of feeder dykes from mantle sources. Contrib. Mineral. Petrol., v.96, pp.47–55.CrossRefGoogle Scholar
  38. Madhavan, V. and Leelanandam, C. (1988) Petrology of the Elchuru alkaline pluton, Prakasam District, Andhra Pradesh, India. Jour. Geol. Soc. India., v.31, pp.515–537.Google Scholar
  39. Madhavan, V., Mallikarjun Rao, J., Subrahmanyam, K., Krishna, S.G. and Leelanandam. C. (1989) Bedrock geology of Elchuru alkaline pluton, Prakasam district, Andhra Pradesh. In: Leelanandam, C. (Ed.), Alkaline Rocks. Mem. Geol. Soc India, no.15, pp.189–205.Google Scholar
  40. Madhavan, V., Rao, J.M., Balaram, V. and Ramesh Kumar. (1992) Geochemistry and petrogenesis of lamprophyres and associated dykes from Elchuru, Andhra Pradesh, India. Jour. Geol. Soc. India, v.40, pp.135–149.Google Scholar
  41. Mancktelow, N.S. (2002) Finite-element modelling of shear zone development in viscoelastic materials and its implications for localization of partial melting. Jour. Struct. Geol., v.24, pp.1045–1053.CrossRefGoogle Scholar
  42. Mandal, N., Mitra, A.K., Misra, S. and Chakraborty, C. (2006) Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? Jour. Earth Syst. Sci., v.115, pp.643–660.CrossRefGoogle Scholar
  43. Mandelbrot, B.B. (1967) How long is the coast of Britain? Statistical self–similarity and fractional dimension. Science, v.156, pp.636–638.CrossRefGoogle Scholar
  44. Mandelbrot, B.B. (1983) The fractal geometry of nature. San Francisco, W.H. Freeman.Google Scholar
  45. Marko, W.T., Barnes, C.G., Yoshinobu., A.S., Frost, C.D. and Nordgulen, O. (2013) Geology, geochemistry, and emplacement conditions of the Vega intrusive complex; an example of large–scale crustal anatexis in north–central Norway: Geol. Soc. London Spec. Publ., v.390, pp.603–631.CrossRefGoogle Scholar
  46. Marko, W., Barnes, L., Vietti, L., McCulloch, L., Anderson, H., Barnes, C. and Yoshinobu, A. (2005) Xenolith incorporation, distribution, and dissemination in a mid–crustal granodiorite, Vega pluton, Central Norway, Eos Trans. AGU, 86, Fall Meet. Suppl., Abstract V13E–0596.Google Scholar
  47. Marrett, R. and Allemendinger, R.W. (1991) Estimate of strain due to brittle faulting: Sampling of fault populations. Jour. Struct. Geol., v.13, pp.735–738.CrossRefGoogle Scholar
  48. Marsh, B.D. (1982) On the mechanics of igneous diapirism, stoping and zone melting. Amer. Jour. Sci., v.282, pp.808–855.CrossRefGoogle Scholar
  49. Matsushita, M., Hayakawa, Y. and Sawada, Y. (1985) Fractal structure and cluster statistics of Zinc-metal trees de-posited on a line electrode. Phys. Rev. A., v.32, pp.3814–3816.CrossRefGoogle Scholar
  50. McBirney, A.R. (1959) Factors governing emplacement of volcanic necks. Amer. Jour. Sci., v.257, pp.431–448.Google Scholar
  51. Mitchell, R.H. (1986) Kimberlites: Mineralogy, geochemistry and petrology. Plenum, New York.CrossRefGoogle Scholar
  52. Mitra, G. (1979) Ductile deformation zones in Blue ridge basement rocks and estimation of finite strain. Geol. Soc. Amer. Bull., v.90, pp.935–951.CrossRefGoogle Scholar
  53. Morin, D., and Corriveau, L. (1996) Fragmentation processes and xenoliths transport in a Proterozoic minette dyke, Grenville Province, Quebec. Contrib. Mineral. Petrol., v.125, pp.319–331.CrossRefGoogle Scholar
  54. Nicol, A., Walsh, J.J, Waterson, J. and Gillespie, P.A. (1996) Fault size distribution-are they really power-law? Jour. Struct. Geol., v.18, pp.191–197.CrossRefGoogle Scholar
  55. Parkar, A.J., Rickwood, P.C. and Tucker, D.H. (1990) Mafic dykes and emplacement mechanisms. Proceedings of the second International dyke conference, Adelaide, South Australia, v.23, pp.421–430.Google Scholar
  56. Perfect, E. (1997) Fractal models for the fragmentation of rocks and soils: a review. Engg. Geol., v.48, pp.185–198.CrossRefGoogle Scholar
  57. Perugini, D. and Poli, G. (2000) Chaotic dynamic fractals in magmatic interactions processes: a different approach to the interpretation of mafic microgranular enclaves. Earth Planet. Sci. Lett., v.175, pp.91–103.Google Scholar
  58. Perugini, D., Speziali, A., Caricchi, L. and Kueppers, U. (2011) Application of fractal fragmentation theory to natural pyroclastic deposits; Insights into volcanic explosivity of the valentano scoria cone (Italy). Jour. Volcanol. Geotherm. Res., v.202, pp.200–210.CrossRefGoogle Scholar
  59. Perugini, D., Valentini, L. and Poli, G. (2007) Insights into magma chamber processes from the analysis of size distribution of enclaves in lava flows: A case study from Vulcano Island (southern Italy). Jour. Volcanol. Geotherm. Res., v.166, pp.193–203.CrossRefGoogle Scholar
  60. Pickering, G., Bull, J.M. and Sanderson, D.J. (1995) Sampling power-law distributions. Tectonophysics, v.248, pp.205–226.CrossRefGoogle Scholar
  61. Platten, M. (1982) A late Caledonian breccia dyke swarm in Glen Creran, near Glen Coe in Grampian Highlands. Geol. Magz., v.119, pp.169–180.CrossRefGoogle Scholar
  62. Pollard, D.D. (1987) Elementary fracture mechanics applied to the structural interpretation of dykes. In: Halls and W.F. Fahrig (Eds.), Mafic Dyke Swarms, Geological Association of Canada Special Paper, v.34, pp.5–24.Google Scholar
  63. Poulimenos, G. (2000) Scaling properties of normal fault populations in the western Corinth Graben, Greece: Implications for fault growth in large strain settings. Jour. Struct. Geol., v.22, pp.307–322.CrossRefGoogle Scholar
  64. Rao, A.D.P., Rao, K.N. and Murthy, Y.G.K. (1987) Gabbro-anorthositepyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam District, Andhra Pradesh. Rec. Geol. Surv. India, v.116, pp.1–20.Google Scholar
  65. Rathna, K., Vijaya Kumar, K. and Ratnakar, J. (2000) Petrology of the dykes of Ravipadu, Prakasam Province, Andhra Pradesh, India. Jour. Geol. Soc. India., v.55, pp.339–412.Google Scholar
  66. Ratnakar, J. and Leelanandam, C. (1989) Petrology of alkaline plutons from the eastern and southern Peninsular India. Mem. Geol. Soc. India., no.15, pp.145–176.Google Scholar
  67. Ren, X., Kowallis, B.J. and Best, M.G. (1989) Palaeostress history of the Basin and Range province in western Utah and eastern Nevada from healed microcrack orientations in granites. Geology, v.17, pp.487–490.CrossRefGoogle Scholar
  68. Rickwood, P.C. (1990) The anatomy of a dyke and the determination of propagation and flow directions, In: A. J. Parker, P. C. Rickwood and D.H. Tucker (Eds.), Mafic dykes and Emplacement Mechanisms, Proceedings of the 2nd International Dyke Conference, Balkema Press, Rotterdam, The Netherlands. pp.81–100.Google Scholar
  69. Rothrock, D.A. and Thorndike, A.S. (1984) Measuring of the sea ice floe size distributions. Jour. Geophys. Res., v.89, pp.6477–6486.CrossRefGoogle Scholar
  70. Roy, S.G., Johnson, S.E, Koons, P.O. and Jin, Z. (2012) Fractal analysis and thermal-elastic modeling of a subvolcanic magmatic breccia: The role of post-fragmentation partial melting and thermal fracture in clast size distributions. Geochem.Geophys.Geosyst., v.13, Q05009, doi:10.1029/2011GC004018.CrossRefGoogle Scholar
  71. Rubin, A.M. (1995) Propagation of magma filled cracks. Ann. Rev. Earth Planet. Sci., v.23, pp.287–336.CrossRefGoogle Scholar
  72. Rubin, A.M. (1993) Tensile fracture of rocks at high confining pressure: implications for dyke propagation. Jour. Geophys. Res, v.98, pp.15915–15935.CrossRefGoogle Scholar
  73. Russ, J.C. (1995) The image processing handbook. Boca Raton, FL: CRC.Google Scholar
  74. Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M. and White, P. (1986) Self–similar cataclasis in the formation of fault gouge. Pure Appl. Geophys., v.124, pp.53–78.CrossRefGoogle Scholar
  75. Sarkar, A. and Paul, D.K. (1998) Geochronology of the Eastern Ghats Precambrian Mobile Belts–a review. Geol. Sur. India. Spec. Publ., v.44, pp.51–86.Google Scholar
  76. Schlische, R.W., Young, S.S., Ackermann, R.V. and Gupta, A. (1996) Geometry and scaling relations of a population of very small rift-related normal faults. Geology. v.24, pp.683–686.CrossRefGoogle Scholar
  77. Schoutens, J.E. (1979) Empirical analysis of nuclear and high-explosive cratering and ejecta. Nuclear Geoplosics Sourcebook, v.55, part 2, section 4, Rep.DNA OIH–4–2, Def. Nuclear Agency, Bethesda, MD.Google Scholar
  78. Sillitoe, R.H. (1985) Ore-related rupturing. Pure. Appld. Geophys., v.124, pp.159–174.Google Scholar
  79. Spera, F.J. (1984) Carbon dioxide in petrogenesis III: Role of volatiles in the ascent of alkaline magma with special reference to xenoliths-bearing mafic lavas. Contrib. Mineral. Petrol., v.88, pp.217–232.CrossRefGoogle Scholar
  80. Storti, F., Billi, A. and Salvini, F. (2003) Particle size distribution in natural carbonate fault rocks: insight for non–self-similar cataclasis. Earth Planet. Sci. Lett., v.206, pp.173–186.CrossRefGoogle Scholar
  81. Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V and Gopalan, K. (1989) Rb-Sr age and petrology of Elchuru alkaline complex: implications to alkaline magmatism in the Eastern Ghat Mobile Belt. In: Alkaline Rocks, Leelanadam, C. (Ed.), Mem. Geol. Soc. India., no.15, pp.207–223.Google Scholar
  82. Turcotte, D. L. (1986) Fractals and fragmentation. Jour. Geophys. Res., v.91, pp.1921–1926.CrossRefGoogle Scholar
  83. Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschmidt, K. (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos, v.89, pp.447–477.CrossRefGoogle Scholar
  84. Van Dijk, J.P., Bello, M., Toscano, C., Bersani, A. and Nardon, S. (2000) Tectonic model and three-dimensional fracture network analysis of Monte Alpi (Southern Apennines). Tectonophysics, v.324, pp.203–237.CrossRefGoogle Scholar
  85. Ventura, G., Gaudio, P.D. and Iezzi, G. (2006) Enclaves provide new insights on the dynamics of magma mingling: A case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth Planet. Sci. Lett., v.243, pp.128–140.CrossRefGoogle Scholar
  86. Vijaya Kumar, K. and Leelanandam, C. (2008) Evolution of the Eastern Ghats Belts, India: A plate tectonic perspective. Jour. Geol. Soc. India., v.50, pp.641–644.Google Scholar
  87. Vijaya Kumar, K. and Ratnakar, J. (2001) Petrogenesis of the Ravipadu gabbro pluton, Prakasam Alkaline Province, Andhra Pradesh. Jour. Geol. Soc. India., v.57, pp.113–140.Google Scholar
  88. Vijaya Kumar, K., Ernst, W.G., Leelanandam, C., Wooden, J.L., Grove, M.J. (2011) Origin of ~2.5 Ga potassic granite from the Nellore Schist Belt, SE India: textural, cathodoluminescence, and SHRIMP U–Pb data. Contrib. Mineral. Petrol., v.162, pp.867–888.CrossRefGoogle Scholar
  89. Vijaya Kumar, K., Frost, C.D., Frost, B.R. and Chamberlain, K.R. (2007) The Chimakurthi, Errakonda, and Upplapadu plutons, Eastern Ghats Belts, India: An unusual association of tholeiitic and alkaline magmatism. Lithos., v.97, pp.30–57.CrossRefGoogle Scholar
  90. Volland, S. and Kruhl, J.K. (2004) Anisotropy quantification: the application of fractals geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW-Sardinia. Jour. Struct. Geol., v.26, pp.1489–1500.CrossRefGoogle Scholar
  91. Walsh, J.J. and Watterson, J. (1992) Populations of faults and fault displacement and their effects on estimates of fault-related regions extension. Jour. Struct. Geol., v.14, pp.701–712CrossRefGoogle Scholar
  92. Wolak, J., Yoshinobu, A.S. and Barnes, C.G. (2005) Xenoliths, foliations and folds in a big tank filled by many small increments. Geol. Soc. Amer. Abstracts with Programs, v.37, pp.71.Google Scholar
  93. Wyllie, P.J. (1980) The origin of kimberlites. Jour. Geophy. Res., v.85, pp.6902–6910.CrossRefGoogle Scholar
  94. Yoshinobu, A.S. and Barnes, C.G. (2008) Is stoping a volumetrically significant pluton emplacement process? Discussion. Geol. Soc. Amer., v.120, pp.1080–1081.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • B. Nagaraju
    • 1
  • Sachin S. Ghodke
    • 1
  • K. Rathna
    • 1
  • Gaurav J. Kokandakar
    • 1
  • Laxman B. More
    • 1
  • Munjaji V. Bhosle
    • 1
  • K. Vijaya Kumar
    • 1
  1. 1.School of Earth SciencesSRTM UniversityNandedIndia

Personalised recommendations