Skip to main content
Log in

Facies analysis of Pleistocene limestones from Neil West Coast Formation, Neil Island, Ritchie’s archipelago of South Andaman, India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Petrographic thin section analysis of the samples collected from the type section of Neil West Coast Formation, situated in the west coast of Neil Island yielded moderately preserved coralline red algae, benthic and planktic foraminifers, coral fragments, echinoid spines and gastropod shells. The coralline red algae are represented by both non-geniculate and geniculate forms. The non-geniculate forms belong to melobesids, lithophylloids and mastophoroides. The geniculate forms are represented by species of Amphiroa, Corallina, and Jania. However, the diversity and abundance of coralline algal forms are less in comparison to the benthic foraminifers those are represented by Amphistegina, Neorotalia, Ammonia, Elphidium, Operculina, Assilina, Amphisorus and texularids. Planktic foraminifers like Globigerinoides and other biogenic components viz., gastropod shells, echinoid spines and coral fragments are also common. A foraminiferal-algal grainstone facies has been recognized as observed in the field as well as in thin section analysis. The overall assemblage of the biogenic components and facies analysis indicate intertidal to near shore environment of deposition with high energy condition and increased hydrodynamic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adey, W.H. (1979) Crustose coralline algae as micro-environmental indicators for the Tertiary. In: Gray, J., Boucot, A.J. (Eds.), Historical Biogeography. Oregon State University Press, pp. 459–464.

    Google Scholar 

  • Adey, W.H. (1986) Coralline algae as indicators of sea-level. In: O. Plassche (Ed.), Sea level Research: A Manual for the Collection and Evaluation of Data. Free Univ. Geo Book, Norwich, pp. 229–280.

    Chapter  Google Scholar 

  • Adey, W.H., Townsend, R.A. and Boykins, W.T. (1982) The crustose coralline algae (Rhodophyta, Corallinaceae) of the Hawaiian Islands. Smith. Cont. Mar. Sci., v.15, pp. 1–75.

    Google Scholar 

  • Aguirre, J. and Braga, J.C. (1998) Redescription of Lemoine’s (1939) types of coralline algal species from Algeria. Palaeontol., v.41, pp. 489–507.

    Google Scholar 

  • Aguirre, J., Riding, R. and Braga, J.C. (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology, v.26, pp. 651–667.

    Article  Google Scholar 

  • Bassi, D. (1998) Coralline algal facies and their palaeoenvironments in the Late Eocene of Northern Italy (Calcare di Nago, Trento). Facies, v.39, pp. 179–201.

    Article  Google Scholar 

  • Bassi, D. and Nebelsick, J.H. (2000) Calcareous algae from the Lower Oligocene Gornji Grad Beds of Northern Slovenia. Riv. Ital. di Paleontol. S., v.106, pp. 99–122.

    Google Scholar 

  • Bassi, D., Braga, J.C. and Iryu, Y. (2009) Palaebiogeographic pattern of a persistent monophyletic lineage: Lithophyllum pustulatum species group (Corallinaceae, Corallinales, Rhodophyta). Palaeogeogr. Palaeoclimatol. Palaeoecol., v.284, pp. 237–245.

    Article  Google Scholar 

  • Basso, D., Fravega, P. and Vannucci, G. (1997) The taxonomy of Lthothamnion ramosissimum (Gümbel non Reuss) Conti and Lithothamnion operculatum Conti (Rhodophyta, Corallinaceae). Facies, v.37, pp. 167–182.

    Article  Google Scholar 

  • Beckmann, J.P. (1976) Shallow-water foraminifers and associated micro fossils from Sites 315, 316 and 318, DSDP Leg 33. In: S.O. Schlanger, E.D. Jackson et al. (Eds.), Init. Repts. DSDP 33, Washington (U.S. Govt. Printing Office), pp. 467–490.

    Google Scholar 

  • Bella, L.D, Carboni, M.G. and Bergamin, L. (2000-2002) Pliocene-Pleistocene foraminiferal assemblages of the middle and lower Tiber valley: Stratigraphy and Paleoecology. Geol. Rom., v.36, pp. 129–145.

    Google Scholar 

  • Belline, A. and Mastrorilli, V.I. (1975) Les corallinacees des coupes basales du Miocene de Bonifacio. Bull. Soc. Sci. Hist. Nat. Corse, v.615-616, pp. 33–59.

    Google Scholar 

  • Boeckelmann, K. (1985) Mikrofazies der Auernig-Schichten und Grenzland-Bänke westlich des Rudnig-Sattels (Karbon-Perm; Karnische Alpen), Facies, v.13, pp. 155–174.

    Article  Google Scholar 

  • Bosence, D.W.J. (1991) Coralline algae: mineralization, taxonomy and palaeoecology. In: Riding, R. (Ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Heidelberg, pp. 98–113.

    Chapter  Google Scholar 

  • BouDagher-Fadel, M.K. (2008) Evolution and Geological Significance of Larger Benthic Foraminifera. Developments in Palaeontology and Stratigraphy, Elsevier, v.21, pp. 1–544.

    Google Scholar 

  • Braga, J.C. and Aguirre, J. (1995) Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Rev. Palaeobot. Palynol., v.86, pp. 265–285.

    Article  Google Scholar 

  • Braga, J.C., Vescogni, A., Bosellini, F.R. and Aguirre, J. (2009) Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.275, pp. 113–128.

    Article  Google Scholar 

  • Brierley, C.M., Fedorov, A.V., Liu, Z., Herbert, T.D., Lawrence, K.T. and LaRiviere, J.P. (2009) Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene. Science, v.323, pp. 1714–1718.

    Article  Google Scholar 

  • Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J.E.T., Massari, F. and Rio, D. (2005) Climatic patterns revealed by pollen and oxygen isotope records across Brunhes Matuyama boundary in the central Mediterranean (Southern Italy). In: Head, M.J. and Gibbard, P.L. (Eds.), Geol. Soc. Spec. Publ., v.247, pp. 159–182.

    Google Scholar 

  • Chandra, A., Saxena, R.K. and Ghosh, A.K. (1999) Coralline algae from the Kakana Formation (Middle Pliocene) of Car Nicobar Island, India and their implication in biostratigraphy, palaeoenvironment and palaeobathymetry. Curr. Sci., v.76, pp. 1498–1502.

    Google Scholar 

  • Conti, S. (1946a) Revisione critica di Lithothamnium ramosissimum Reuss. Publ. 1st Geol. Univ. Genova, Quaderni 1-2, ser. A - Paleontologia, pp. 3–29.

    Google Scholar 

  • Conti, S. (1946b) Le Corallinacee del calcare miocenico (Leithakalk) de bacino di Vienna. Publ. 1st Geol. Univ. Genova, Quaderni 1-2, ser. A - Paleontologia, pp. 3–68.

    Google Scholar 

  • D’atri, A. and Piazza, M. (1988) Facies a Corallinacee del Pliocene di Masserano (Biellese). Atti del Quarto Simposio di Ecologia e Paleoecologia delle Comunita Bentoniche, Sorrento, pp. 387–395.

    Google Scholar 

  • Dunham, R.J. (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. A Symposium, v.1. AAPG Mem., pp. 108–171.

    Google Scholar 

  • Elliott, G.F. (1958) Fossil microproblematica from the Middle East. Micropal., v.4, pp. 419–428.

    Article  Google Scholar 

  • Faichney, I.D.E., Webster, J.M., Clague, D.A., Braga, J.C., Renema, W. and Potts, D.C. (2011) The impact of the Mid-Pleistocene Transition on the composition of submerged reefs of the Maui Nui Complex, Hawaii. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.299, pp. 493–506.

    Article  Google Scholar 

  • Fallaw, W.C. (1973) Depositional Environments of Marine Pleistocene Deposits in Southeastern North Carolina. Geol. Soc. Am. Bull., v.84, pp. 257–268.

    Article  Google Scholar 

  • Feng, F. and Bailer-Jones, C.A.L. (2015) Obliquity and precession as pacemakers of Pleistocene deglaciations. Quat. Sci. Rev., v.122, pp. 166–179.

    Article  Google Scholar 

  • Filippelli, G.M. and Flores, J.A. (2009) From the warm Pliocene to the cold Pleistocene: a tale of two oceans. Geology, v.37, pp. 959–960.

    Article  Google Scholar 

  • Finger, K.L., Hickman, C.S., James, M.J., Lipps, J.H., Peterson, D.E., Pitt, L.J. and Pitt W.D. (2007) Pleistocene marine paleoenvironments on the Galapagos Islands. Geol. Soc. Am., Annual Meeting, Abstracts with Programs 39, Paper No. 144-1.

    Google Scholar 

  • Folk, R.L. (1959) Practical petrographic classification of limestones. AAPG Bull., 43, v.1, pp. 1–38.

    Google Scholar 

  • Folk, R.L. (1962) Spectral subdivision of limestone types, AAPG Special Volumes, pp. 62–84.

    Google Scholar 

  • Fravega, P., Piazza, M. and Vannucci, G. (1994) Nongeniculate coralline algae associations from the Calcare di Rosignano Formation, lower Messinian, Tuscany (Italy). In: R. Matteucci, M.G. Carboni and J.S. Pignatti (Eds.), Studies on Ecology and Paleoecology of Benthic Communities. Bull. Soc. Paleont, Ital., Spec. v.2, pp. 127–140.

    Google Scholar 

  • Ghosh, A.K. and Sarkar, S. (2013) Palaeoecological implications of corallinacean red algae and halimedacean green algae from the prang formation of south shillong plateau, Meghalaya. Jour. Geol. Soc. India, v.81, pp. 531–542.

    Article  Google Scholar 

  • Gordillo, S., Cusminsky, G., Bernasconi, E., Ponce, J.F., Rabassa, J.O. and Pino, M. (2010) Pleistocene marine calcareous macro-and-microfossils of Navarino Island (Chile) as environmental proxies during the last interglacial in southern South America. Quat. Int., v.221, pp. 159–174.

    Article  Google Scholar 

  • Hallock, P. (1984) Distribution of selected species of living algal symbiontbearing foraminifera on two Pacific coral reefs. Jour. Foram. Res., v.14, pp. 250–261.

    Article  Google Scholar 

  • Hassan, S.H. and Ghosh, A.K. (2003) Early Oligocene non-geniculate coralline algal assemblage from Al Bayda Formation, Northeast Libya - a new report. Curr. Sci., v.84, pp. 582–587.

    Google Scholar 

  • Hottinger L., Halicz E. and Reiss Z. (1993) Recent Foraminiferida from the Gulf of Aqaba, Red Sea. Dela SAZU, Ljubljana, v.33, pp. 1–179.

    Google Scholar 

  • Hottinger, L., Halicz, E. and Reiss, Z. (1991) The foraminiferal genera Pararotalia, Neorotalia and Calcarina: taxonomic revision. Jour. Paleo., v.65, pp. 18–33.

    Google Scholar 

  • Hussain, S.M., Krishnamurty, R., Gandhi, M.S., Ilayaraja, K., Ganesan, P. and Mohan, S.P. (2006) Micropaleontological investigations on tsunamigenic sediments of Andaman Islands. Curr. Sci., v.91, pp. 1655–1667.

    Google Scholar 

  • Iryu, Y., Takahashi, Y., Fujita, K., Camoin, G., Caboich, G., Matsuda, H., Sato, T., Sugihara, K., Webster, J.M. and Westphal, H. (2010) Sealevel history recorded in the Pleistocene carbonate sequence in IODP Hole 310-M0005D, off Tahiti. Isl. Arc, v.19, pp. 690–706.

    Article  Google Scholar 

  • Ishijima, W. (1954) Cenozoic coralline algae from Western Pacific, Tokyo (Privately Printed), 1–87 pp.

    Google Scholar 

  • Johnson, J.H. (1957) Geology of Saipan, Mariana Islands, Pt. 3, Paleontology: Calcareous algae. U.S. Geol. Surv. Prof. Paper, v.280, pp. 209–246.

    Google Scholar 

  • Johnson, J.H. (1961) Limestone building algae and algal Limestones. Johnson Publ. Co., Colorado School of Mines, Boulder. 297pp.

    Google Scholar 

  • Johnson, J.H. (1964) Fossil and Recent calcareous algae from Guam. U.S. Geol. Surv. Prof. Paper, v.403, pp. 1–40.

    Google Scholar 

  • Johnson, J.H. and Ferris, B.J. (1950) Tertiary and Pleistocene coralline algae from Lau, Fiji. Bernice P. Bishop Mus. Bull., v.201, pp. 1–27.

    Google Scholar 

  • Kanazawa, K. (1990) Early Pleistocene glacio-eustatic sea-level fluctuations as deduced from periodic changes in cold- and warm-water molluscan associations in the Shimokita Peninsula, Northeast Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.79, pp. 263–273.

    Article  Google Scholar 

  • Kishore, S., Jauhri, A.K., Singh, S.K., Malakar, B. and Mishra, P.K. (2015) Corallline algae from the Neill West Coast formation (Pleistocene), Neil island, South Andaman, India. Jour. Palaeontol. Soc. India, v.60, pp. 57–69.

    Google Scholar 

  • Kundal, P. and Humane, S. (2006) Jania, a geniculate coralline alga from Middle Eocene to Lower Miocene of Kachchh, Gujarat, India. Jour. Geol. Soc. India, v.68, pp. 630–638.

    Google Scholar 

  • Kundal, P. and Mude, S. (2009). Geniculate Coralline Algae from the Neogene-Quaternary Sediments in and Around Porbandar, Southwest Coast of India. Jour. Geol. Soc. India, v.74, pp. 267–274.

    Article  Google Scholar 

  • Kundal, P. and Mude, S.N. (2010) Amphiroa a geniculate coralline algae from the Neogene-Quaternary sediments of the Porbandar area, Gujarat, India. Jour. Palaeontol. Soc. India, v.55, pp. 37–44.

    Google Scholar 

  • Kundal, P., Humane, S.S. and Humane, S.K. (2011) Calcareous algae from the Miliolite Formation (Middle Pleistocene) of Diu, Saurashtra. Jour. Palaeontol. Soc. India, v.56, pp. 181–194.

    Google Scholar 

  • Langer, M.R. and Hottinger, L. (2000) Biogeography of selected “larger” foraminifera. Micropaleontol., v.46, pp. 105–127.

    Google Scholar 

  • Lemoine, M. (1970) Les algues floride´es calcaires du Cre´tace´ du sud de la France. Arch. Mus. Natl. Hist. Nat. (Paris), series 7, v.10, pp. 129–240.

    Google Scholar 

  • Lemoine, M. (1977) Etude d’une collection d’algues corallinacees de la region de Skopje (Yougoslavie). Rev. Micropaleontol., v.20, pp. 10–42.

    Google Scholar 

  • Loeblich, A.R. and Tappan, H. (1987) Foraminiferal Genera and their Classification. Van Nostrand Rienhold Co., New York, 970p.

    Google Scholar 

  • Mastrorilli, V.I. (1973) Flore fossili a Corallinacee di alcune localita venete tra i Berici e l’Altopiano di Asiago. Atti Soc. Ital. Sci. Nat., Mus. Civ. St. Nat. (Milano), v.114, pp. 209–292.

    Google Scholar 

  • Mihaljevic, M., Renema, W., Welsh, K. and Pandolfi, J.M. (2014) Eocene-Miocene shallow-water carbonate platforms and increased habitat diversity in Sarawak, Malaysia. Palaios, v.29, pp. 378–391.

    Article  Google Scholar 

  • Misra, P.K., Jauhri, A.K., Singh, S.K. and Kishore, S. (2006) Coralline algae from the Fulra Limestone (Middle Eocene) of Kachchh, Gujarat, western India. Jour. Geol. Soc. of India, v.67, pp. 495–502.

    Google Scholar 

  • Misra, U., Kishore, S., Singh, S.K., Misra, P.K. and Jauhri, A.K. (2016) New Record of Coralline Algae from the Holocene sediments of Agatti Island, Lakshadweep, India. Jour. Geol. Soc. India, v.87, pp. 308–316.

    Article  Google Scholar 

  • Montaggioni, L.F. (1982) Pleistocene marine depositional environments from Mauritius Island, Indian Ocean. Geobios, v.15, pp. 169–179.

    Google Scholar 

  • Moussavian, E. (1984) Die Gosau- und Alttertiaer-Geroelle der Angerberg-Schichten (Hoeheres Oligozaen, Unterinntal, Noerdliche Kalkalpen). Facies, v.10, pp. 1–86.

    Article  Google Scholar 

  • Moussavian, E. (1991) New aspects of the phylogeny of coralline red algae (Rhodophyta): Cretaceous–Recent. In: F. Barattolo, P.D. Castro and M. Parente (Eds.), 5th Intl. Symp. Fossil Algae, Capri, 150pp.

    Google Scholar 

  • Mude, S.N. and Kundal, P. (2012) Additional Coralline Algae from the Lower Miocene to Late Holocene sediments of the Porbandar Group, Gujarat. Jour. Geol. Soc. India, v.79, pp. 69–76.

    Article  Google Scholar 

  • Nebelsick, J.H. and Bassi, D. (2000) Diversity, growth-forms and taphonomy: key factors controlling the fabric of coralline algal dominated shelf carbonates. In: E. Insalaco, P. Skelton, T. Palmer (Eds.), Carbonate platform systems: components and interactions. Geol. Soc. London Spec. Publ., v.178, pp. 89–107.

    Google Scholar 

  • Nebelsick, J.H., Bassi, D. and Lempp, L. (2013) Tracking palaeoenvironmental changes in coralline algal dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto Formation (Monti Berici, Italy). Facies, v.59, pp. 133–148.

    Article  Google Scholar 

  • Orszag-Sperber, F. and Poignant, A.F. (1972) Corallinacees du Miocene de la plaine orientale de Corse. Rev. Micropaleontol, v.15, pp. 115–124.

    Google Scholar 

  • Pal, T., Chakraborty, P.P., Gupta, T.D. and Singh, C.D. (2003) Geodynamic evolution of the outer-arc–forearc belt in the Andaman Islands, the central part of the Burma-Java subduction complex. Geol. Mag., v.140, pp. 289–307.

    Google Scholar 

  • Pal, T., Gupta, T.D., Chakraborty, P.P. and Das Gupta, S.C. (2005) Pyroclastic deposits of Mio-Pliocene age in the Arakan-Yoma-Andaman-Java subduction complex, Andaman Islands, Bay of Bengal, India. Geochem. Jour., v.39, pp. 69–82.

    Article  Google Scholar 

  • Pedersen, R.B., Searle, M.P., Carter, A. and Bandopadhyay, P.C. (2010) U-Pb zircon age of the Andaman ophiolite: implications for the beginning of subduction beneath the Andaman–Sumatra arc. Jour. Geol. Soc. London, v.167, pp. 1105–1112.

    Article  Google Scholar 

  • Piller, W.E. (1994) Nullipora ramosissima Reuss, 1847 - a rediscovery. Beitr. Pal. Oester.-Ung., v.19, pp. 181–189.

    Google Scholar 

  • Pisera, A. and Studencki, W. (1989) Middle Miocene rhodoliths from the Koryntnica Basin (Southern Poland): Environmental significance and Paleontology. Acta Paleont. Polonica, v.34, pp. 179–209.

    Google Scholar 

  • Rajsekhar, C. (2010) Significance of foraminifera from Cretaceous and intertidal deposits of India. In: P. Kundal and S.K. Humane (Eds.), Gondwana Geol. Mag., Spec. Issue on Appld. Micropaleont., v.25, pp. 43–48.

    Google Scholar 

  • Rasser, R.M. and Piller, W.E. (1999) Application of neontological taxonomic concepts to late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J. Micropalaeontol., v.18, pp. 67–80.

    Article  Google Scholar 

  • Reiss, Z. and Hottinger, L. (1984) The Gulf of Aqaba-Ecological Micropaleontology. Ecological Studies 50, Springer-Verlag, Berlin Heidelberg, 354pp.

    Google Scholar 

  • Renema, W., Bellwood, D.R., Braga, J.C., Bromfield, K., Hall, R., Johnson, K.G., Lunt, P., Meyer, C.P., McMonagle, L.B., Morley, R.J., O’Dea, A., Todd, J.A., Wesselingh, F.P., Wilson, M.E.J. and Pandolfi, J.M. (2008) Hopping hotspots: global shifts in marine biodiversity. Science, v.321, pp. 654–657.

    Article  Google Scholar 

  • Roozpeykar, A. and Moghaddam, I.M. (2016) Benthic foraminifera as biostratigraphical and paleoecological indicators: An example from Oligo-Miocene deposits in the SWof Zagros basin, Iran. Geosci. Front., v.7, pp. 125–140.

    Article  Google Scholar 

  • Roy, T.K. (1983) Geology and hydrocarbon prospects of Andaman and Nicobar. In: L. Bhandari et al. (Eds.), Petroliferous basins of India, Petroleum Asia Journal, KDMIPE, ONGC, Dehradun, pp. 37–53.

    Google Scholar 

  • Sarkar, S. and Ghosh, A.K. (2015) Evaluation of coralline algal diversity from the Serravallian carbonate sediments of Little Andaman Island (Hut Bay), India. Carbon. Evap., v.30, pp. 13–24.

    Article  Google Scholar 

  • Sarkar, S., Ghosh, A.K. and Rao, G.M.N. (2016) Coralline algae and benthic foraminifera from the Long Formation (Middle Miocene) of the Little Andaman Island: Biofacies analysis, systematic and palaeoenvironmental implications. Jour. Geol. Soc. India, v.87, pp. 69–84.

    Article  Google Scholar 

  • Sarma, A., Ghosh, A.K. and Sarkar, S. (2014) First record of Coralline Red Algae from the Kopili Formation (late Eocene) of Meghalaya, N.E. India. Natl. Acad. Sci. Lett., v.37, pp. 503–507.

    Article  Google Scholar 

  • Saxena, R.K., Ghosh, A.K. and Chandra, A. (2005) Calcareous algae from the limestone unit of Hut Bay Formation (Late Middle Miocene) of Little Andaman Island, India. In: J.P. Keshri and A.N. Kargupta (Eds.), Glimpses of Indian Phycology, Bishen Singh Mahendra Pal Singh Press, Dehra Dun, pp. 275–301.

    Google Scholar 

  • Schalekova, A. (1969) Zur miheren Kenntnis der Corallinaceen im Leithakalk des Sandberges bei Devinska Nova Ves (ThebenNeudorf) in der Siidwestslowakei. Acta Geol. Univ. Comenianae, v.18, pp. 93–102.

    Google Scholar 

  • Semeniuk, T.A. (2005) Fossil foraminiferal assemblages from Pleistocene seagrass-bank deposits of the southern Perth Basin, Western Australia, and their palaeotemperature implications. J. R. Soc. West. Aus., v.88, pp. 177–190.

    Google Scholar 

  • Sharma, V. and Srinivasan, M.S. (2007) Geology of Andaman-Nicobar: The Neogene biostratigraphy of Neill Island, Andaman Sea. Capital Publishing Company, New Delhi, 1–164 pp.

    Google Scholar 

  • Singh, P. and Vimal, K.P. (1974) Biostratigraphic zones in the Archipelago Group of the Neil Island, South Andaman. Cur. Sci., v.43, pp. 83–84.

    Google Scholar 

  • Singh, P. and Vimal, K.P. (1976) Late Miocene-Early Pliocene discoasters from the Neil island, South Andaman. Jour. Geol. Soc. India, v.17, pp. 37–44.

    Google Scholar 

  • Singh, S.K., Kishore, S., Misra, P.K., Jauhri, A.K. and Gupta, A. (2010) Middle Eocene Calcareous Algae from Southwestern Kachchh, Gujarat. Jour. Geol. Soc. India, v.75 pp. 749–759.

    Article  Google Scholar 

  • Spooner, M.I., Barrows, T.T., Deckker, P.D. and Paterne, M. (2005) Palaeoceanography of the Banda Sea, and late Pleistocene initiation of the Northwest Monsoon, Global Planet. Change, v.49, pp. 28–46.

    Article  Google Scholar 

  • Srinivasan, M.S. and Azmi, R.J. (1976a) Contribution to the stratigraphy of Neil Island, Ritchie’s Archipelago, Andaman Sea. In: M.S. Srinivasan (Ed.), Proceedings of the VIIndian Colloquium on Micropaleontology and Stratigraphy, Varanasi, pp. 283–301.

    Google Scholar 

  • Srinivasan, M.S. and Azmi, R.J. (1976b) New developments in the late Cenozoic lithostratigraphy of Andaman-Nicobar Islands, Bay of Bengal. In: M.S. Srinivasan (Ed.), Proceedings of the VIIndian Colloquium on Micropaleontology and Stratigraphy, Varanasi, pp. 302–327.

    Google Scholar 

  • Studencki, W. (1988) Red algae from the Pinczow Limestones (Middle Miocene, Swietokrzyskie Mountain, Poland). Acta Palaeont. Polonica, v.33, pp. 3–57.

    Google Scholar 

  • Tziperman, E. and Gildor, H. (2003) On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times, Paleoceanography, v.18, pp. 1001–1008.

    Article  Google Scholar 

  • Vannucci, G., Piazza, M., Fravega, P. and Chiesa, I. (1994) Calcareous Rhodophyceae from the “facies astiane” (Pliocene) of Valle San Bartolomeo (Alessandria, N.W. Italy). In: R. Matteucci, M.G. Carboni and J.S. Pignatti (Eds.), Studies on Ecology and Paleoecology of Benthic Communities. Bull. Soc. Paleont. Italy Spec., v.2, pp. 351–364.

    Google Scholar 

  • Vaughan, T.W. and Cole, W.S. (1936) New Tertiary foraminifera of the genera Operculina and Operculinoides from North America and the West Indies. Proc. U.S. Nat. Mus., v.83(2996), pp. 487–496.

    Article  Google Scholar 

  • Wara, M.W., Ravelo, A.C. and Delaney, M.L. (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science, v.309, pp. 758–761.

    Article  Google Scholar 

  • Weber-van Bosse, A. and Foslie, M. (1904) The Corallinaceae of the Siboga-Expedition. Siboga Expeditie Monographie, v.61, pp. 1–110.

    Google Scholar 

  • Wilson, M.E.J. (2008) Global and regional influences on equatorial shallowmarine carbonates during the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.265, pp. 262–274.

    Article  Google Scholar 

  • Woekerling, W.J., Irvine, L.M. and Harvey, A. (1993) Growth forms in nongeniculate Coralline Red Algae (Corallinales, Rhodophyta). Aus. Syst. Bot., v.6, pp. 277–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Ghosh, A.K. & Mazumder, A. Facies analysis of Pleistocene limestones from Neil West Coast Formation, Neil Island, Ritchie’s archipelago of South Andaman, India. J Geol Soc India 90, 428–436 (2017). https://doi.org/10.1007/s12594-017-0736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0736-2

Navigation