Journal of the Geological Society of India

, Volume 89, Issue 4, pp 391–397 | Cite as

Microflora from sauropod coprolites and associated sediments of Late Cretaceous (Maastrichtian) Lameta Formation of Nand-Dongargaon basin, Maharashtra

Research Articles

Abstract

Micofloral study of Lameta sediments and associated sauropod coprolites in the Nand-Dongargaon basin in Maharashtra was conducted to understand the diet and habitat of sauropods. The study revealed the presence of pollen, spores, algal and fungal remains, well-preserved cuticles of Poaceae, and testate amoebae. Vegetation during Lameta included tall arboreal taxa, such as conifers (Podocarpus and Araucaria), Cycads (Cycas), Euphorian and Barringtonia and herbs and shrubs, such as Cheirolepidiaceae (Classopollis), Arecaceae (Palmaepollenites), Poaceae (Graminidites), Asteraceae (Compositoipollenites), Caryophyllaceae (Cretacaeiporites and Periporopollenites), and Acanthaceae (Multiareolites). Data suggest that the sauropods ate soft tissues of angiosperms and gymnosperms. The intake of testate amoeba, algal remains, sponge spicules, and diatoms might be through water intake.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambwani, K., Sahni, A., Kar, R. K. and Dutta, D. (2003) Oldest known nonmarine diatoms (Aulacoseira) from the Uppermost Cretaceous Deccan Intertrappean beds and Lameta formation of India. Review de Micropaleontology, v.46, pp.67–71.CrossRefGoogle Scholar
  2. Atik, C. and Ates, S. (2012) Mass balance of silica in straw from the perspective of silica reduction in straw pulp. Bio Resources, v.7 (3), pp. 3274–3282.Google Scholar
  3. Birader and Bonde (1979) On a fossil palm peduncle from Dongargaon, District Chandrapur, Maharashtra, India; Geophytology, v.9, pp.132–138.Google Scholar
  4. Bonde and Birader (1981) On two palm woods from the Deccan intertrappean beds of Dongargaon, District Chandrapur, Maharashtra (India). Jour. Univ. Poona Sci., v.54, pp.247–257.Google Scholar
  5. Booth, R.K., Lamentowicz, M. and Charman, D. J. (2010) Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat, v.7 (2010/11), 02, pp.1–7.Google Scholar
  6. Charman, D.J., Gehrels, W.R. and Roe, H. (2000) The use of <63µm sediment fractions in the separation and identification of testate amoebae in the intertidal zone. Proc. 5th Internat. Workshop on Agglutinated Foraminifera, Hart, M., Kaminski, M.A. & Smart, C. (Eds.), Grzybowski Foundation Special Publication no., v.7, pp.89–99.Google Scholar
  7. Charman, D.J., Roe, H.M. and Gehrels, W.R. (1998) The use of testate amoebae in studies of sea-level change: a case study from the Taf estuary, South Wales, UK. The Holocene, v.8, pp.209–218.CrossRefGoogle Scholar
  8. Cookson, I.C., (1947a) Fossil fungi from Tertiary deposits in the Southern Hemisphere. Part I. Proc. Linnean Soc. New South Wales, v.72, pp. 207–214.Google Scholar
  9. Dutta, D. and Ambwani, K. (2007) Capers: A food for Upper Cretaceous dinosaurs of Pisdura, India. Curr. Sci., v.92 (7), pp. 897–899.Google Scholar
  10. Farooqui, A., Aggrawal, N., and Jha, N. (2014) Thecamoebians from Late Permian Gondwana sediments of peninsular India. Eur. Jour. Protistol., v.50 (1), pp. 89–105.CrossRefGoogle Scholar
  11. Farooqui, A., Aggrawal, N., Jha, N. and Phartiyal, B. (2015) Oldest Record of Freshwater Diatom Frustules in Tests of Permian thecamoebians: Faithfulness of Sedimentary Record. Int. Jour. Curr. Microbiol. App. Sci, v.4 (7), pp. 472–485.Google Scholar
  12. Ghosh, P., Bhattachrya, S.K., Sahni, A., Kar, R.K., Mohabey, D.M. and Ambwani, K. (2003) Dinosaur coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India; isotopic and other marker suggesting a C3 plant diet. Cretaceous Res., v.24, pp.743–750.CrossRefGoogle Scholar
  13. Helen, M.R. and Patterson, R. T. (2006) Distribution of the Thecamoebians (Testate Amoebae) in small lakes and ponds, Barbados, West Indies. Jour. of Foraminiferal Res., v.36 (2), pp. 116–134.CrossRefGoogle Scholar
  14. Jain, S.L. (1989) Recent Dinosaur discoveries in India, including eggshells, nests, coprolites. In D. D. Gellette and M. G. Lockley, eds., Dinosaur tracks and traces. New York: Cambridge Univ. Press. pp.99–108.Google Scholar
  15. Jain, S.L. and Sahni, A. (1986) Some Cretaceous vertebrates from central India: Their palaeogeographical implications: Lucknow, Indian Association of Palynostratigraphers, Symp., BSIP, Lucknow, pp.66–83.Google Scholar
  16. Kar, R.K., Mohabey, D.M. and Srivastava, S. (2004a) Angiospermous fossils woods from the Lameta Formation (Maastrichtian), Maharashtra, India. Geophytol., v.33 (1&2), pp.21–27.Google Scholar
  17. Kar, R.K., Sharma, N. and Kar, R. (2004b) Occurrence of fossil fungi in dinosaur dung mass and its implication on food habit. Curr. Sci., v.87 (8).Google Scholar
  18. Khosla, A., Chin, K., Alimohammadin, H. and Dutt, D. (2015) Ostracods, plant tissues, and other inclusions in coprolites from the Late Cretaceous Lameta Formation at Pisdura, India: Taphonomical and palaeoecological implications. Palaeogeo. Palaeoclimat. Palaeoeco., v.418, pp.90–100.CrossRefGoogle Scholar
  19. Lodge, D.J. (1989) The influence of soil moisture and flooding on formation of VA-endo and ectomycorrhizae in Populus and Salix. Plant and Soil. v.117, pp.243–253.CrossRefGoogle Scholar
  20. Mankar, R.S. and Srivastava, A.K. (2015) Salbardi–Belkher inland basin: a new site of Lameta sedimentation at the border of districts Amravati, Maharashtra and Betul, Madhya Pradesh, Central India. Curr. Sci., v.109 (7), pp. 1337–1343.Google Scholar
  21. Matley, C.A. (1939) The Coprolites of Pisdura, central province. Rec. Geol. Surv. India, v.74, pp.535–547.Google Scholar
  22. Medioli, F.S., Scott, D.B., Collins, E.S. and Wall, J.H. (1990) Thecamoebians from the Early Cretaceous deposits of Ruby Creek, Alberta (Canada). In: Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (eds.) Proceedings of the NATO Advanced Study Institute on Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATO ASI Series. Series D: Mathematical and Physical Sciences, 327. Dordrecht: Reidel Publishing Company, pp.793–812.CrossRefGoogle Scholar
  23. Medioli, F.S. and Scott, D.B. (1988) Lacustrine thecamoebians (mainly Arcellaceans) as potential tools for palaeolimnological interpretations. Paleogeo., Paleoeclimat., Paleoeco., v.62, pp.361–386.CrossRefGoogle Scholar
  24. Medioli, F.S. and Scott, D.B. (1983) Holocene Arcellacea (thecamoebians) from eastern Canada: Cushman Foundation for Foraminiferal research, Spec. Publ., v.21, pp.1–63.Google Scholar
  25. Mohabey, D.M. (1990a) Discovery of dinosaur nesting site in Maharashtra. Gondwana Geol. Mag., v.3, pp. 32–34.Google Scholar
  26. Mohabey, D.M. (1990b) Dinosaur eggs from Lameta Formation of Western and Central India; their occurrence and nesting behaviour. Symp. Workshop IGCP 216 and 245, Chandigarh, pp.18–21.Google Scholar
  27. Mohabey, D.M. (1996) Depositional environment of Lameta Formation (Late Cretaceous) of Nand-Dongargaon Basin, Maharashtra: The fossil and lithofacies evidences. Mem. Geol. Soc. India, no.37, pp.363–386.Google Scholar
  28. Mohabey, D.M. (2001, a) Dinosaur Eggs and Dung (Faecal mass) from Late Cretaceous of Central India: Dietary Implications. Geol. Surv. India Spec. Publ. No.64, pp.605–615.Google Scholar
  29. Mohabey, D.M. (2001, b) Indian Dinosaur Eggs: a review. Jour. Geol. Soc., India, v.58, pp.479–508.Google Scholar
  30. Mohabey, D.M. (2005) Late Cretaceous (Maastrichtian) nests, eggs, and dung mass (coprolites) of sauropods (titanosaurs) from India, in Tidwell, V., and Carpenter, K., eds., Thunder Lizards: The Sauropodomorph Dinosaurs: Bloomington, Indiana. Indiana Univ. Press, pp.466–489.Google Scholar
  31. Mohabey, D.M. and Samant, B. (2003) Floral Remains from Late Cretaceous Faecal Mass of Sauropods from Central India: Implication to their Diet and Habitat. Gondwana Geol. Magz., Spec. v.6, pp.225–238.Google Scholar
  32. Mohabey, D.M. and Udhoji, S.G. (1990) Fossils occurrences and sedimentation of Lameta formation of Nand area, Maharashtra: Palaeoenvironmental, palaeoecological and taphonomical implications. In: Symp. Workshop IGCP-216 and 245, Chandigarh, pp. 30–32.Google Scholar
  33. Mohabey, D.M. and Udhoji S.G. (1996) Fauna and flora from Late Cretaceous (Maastrichtian) non marine Lameta Sediments associated with Deccan volcanic episodes, Maharashtra: its relevance to the K/T boundary problem, Palaeoenvironment and palaeogeography. Gondwana Geol. Mag., Spec. v.2, pp.349–364.Google Scholar
  34. Mohabey, D.M. and Samant, B. (2005) Lacustrine facies association of a Maastrichtian lake (Lameta Formation) from Deccan volcanic terrain central India: implications to depositional history, sediment cyclicity and climates. Gondwana Geol. Mag., v.8, pp.37–52.Google Scholar
  35. Mohabey, D.M., Udhoji, S.G. and Verma, K.K. (1993) Palaeontological and Sedimentological observations on non-marine Lameta Formation (Upper Cretaceous) of Maharashtra, India: their palaeoecologiclal and palaeoenvironmental significance. Palaeogeo. Palaeoclim. Palaeoecol., v.105, pp.83–94.CrossRefGoogle Scholar
  36. Mukherjee, D. (2014) Evidence of Araucaria (Monkey-Puzzle) from Lameta Formation (Upper Cretaceous), Pisdura, Maharashtra, India. Internat. Jour. Geol., Earth and Envi. Sci. (Online), v.4 (1), pp. 174–183.Google Scholar
  37. Muravnik, L.E. and Shavarda, A.L. (2011) Pericarp peltate trichomes in Pterocarya Rhoifolia: Histochemistry, Ultrastructure and chemical composition. Internat. Jour. Plant Sci., v.172 (2), pp. 159–172.CrossRefGoogle Scholar
  38. Patterson, R.T. and Kumar, A. (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeo. Palaeoclimat. Palaeoeco., v.180, pp.225–251.CrossRefGoogle Scholar
  39. Porter, S.M. and Knoll, A.H. (2000) Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, v.26, pp.360–385.CrossRefGoogle Scholar
  40. Prasad, V., Caroline, A.E., Stromberg, C.A.E., Alimohammadian, H. and Sahni, A. (2005) Dinosaur Coprolites and the Early Evolution of Grasses and Grazers; Science, v.310, pp.1177–1180.CrossRefGoogle Scholar
  41. Prasad, V., Stromberg, C.A.E., Leache, A.D., Samant, B., Patnaik, R., Tang, L., Mohabey, D.M., Ge, S. and Sahni, A. (2011) Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Communication, v.2, 480/DOI:10.1038/ncomms1482.Google Scholar
  42. Read, D.J. (1984) The structure and function of the vegetative mycelium of the mycorrhizal roots, In: Jenny A.B.M. Rayner, D.H. (Eds.), the ecological and physiology of the fungal mycelium. Cambridge Univ. Press, pp.215–240.Google Scholar
  43. Read, D.J. (1991a) Mycorrhizas in ecosystems. Experientia, v.47, pp.376–391.CrossRefGoogle Scholar
  44. Read, D. J. (1991b) Mycorrhizas in ecosystems-nature’s response to the Law of the minimum In: Hawksworth, D.L. (Eds.), Frontiers in mycology. Regensburg, CAB International, pp.101–30.Google Scholar
  45. Samant, B. and Mohabey, D.M. (2005) Response of Flora to Deccan Volcanism: A Case Study from Nand-Dongargaon Basin of Maharashtra, Implications to Environment and Climate. Gond. Geol. Magz., Spl. v.8, pp.151–164.Google Scholar
  46. Samant, B. and Mohabey, D.M. (2009) Palynoflora from Deccan volcanosedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation. Jour. Biosci., v.34, pp.811–823.CrossRefGoogle Scholar
  47. Samant, B. and Mohabey, D.M. (2014) Deccan volcanic eruptions and their impact on flora: Palynological evidence. Geol. Soc. Amer. Spec. Papers; v.505, pp.171–191.CrossRefGoogle Scholar
  48. Schmidt, A.R., Schonborn, W. and Schafer, U. (2004) Diverse fossil amoebae in German Mesozoic amber. Palaeontol., v.47, pp.185–197.CrossRefGoogle Scholar
  49. Schonborn, W., Dörfelt, H., Foissner, W., Krienitz, L., Schäfer, U., (1999) A fossilized microcenosis in Triassic amber. Jour. Eukaryot. Microbiol., v.46, pp.571–584.CrossRefGoogle Scholar
  50. Selkirk, D.R. (1975) Tertiary fossil fungi from Kiandra, New South Wales; Proc. Linn. Soc. Nw., v.100, pp.70–94.Google Scholar
  51. Sharma, N., Kar, R.K., Agrawal, A. and Kar, R. (2005) Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleont., v.51, pp.73–82.CrossRefGoogle Scholar
  52. Tolonen, K., Warner, B.G., Vasander, H. (1992) Ecology of testaceans (Protozoa, Rhizopoda) in mires in Southern Finland.1. Autecology. Arch Protistenkd., v.142, pp.119–138.CrossRefGoogle Scholar
  53. Tandon, S.K. (2002) Record of Influence of Deccan volcanisn on contemporary sedimentary environment in central India. Sediment. Geol., v.147, pp.172–192.Google Scholar
  54. Tandon, S.K. (2005) Sedimentary Environments of late Cretaceous Sequences of Central India: Influence of Deccan Volcanism. Gond. Geol. Magz., Spec., v.8, pp.1–4.Google Scholar
  55. Tandon, S.K. and Andrews, J.E. (2001) Lithofacies associations and stable isotopes of palustrine and calcretes carbonate: examples from an Indian regolith; Sedimentology, v.48, pp.339–355.CrossRefGoogle Scholar
  56. Tandon, S.K., Sood, A., Andrews, J.E. and Dennis, P.F. (1995) Paleoenvironment of the Dinosaur-Bearing Lameta Beds (Maastrichtian) Narmada Valley, central India. Palaeogeogr. Paleoclimatol. Paleoecol., v.117, pp.153–184.CrossRefGoogle Scholar
  57. Turner, S.D., Friese, C.F. (1998) Plant mycorrhizal community dynamics associated with moisture gradient within a rehabilitated Prairie fern. Restoration Ecology, v.6 (1), pp. 1–44.CrossRefGoogle Scholar
  58. Verma, A. (1990) Function and application of Arbuscular Mycorrhizal Fungi in Arid and Semi-Arid soils. In: Verma, A., Hock, B. (Eds.), Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology. Springer-VerlagHeidelberg, pp.521–556.Google Scholar
  59. Von Huene, F.B. and Matley, C.A. (1933) The Cretaceous Saurischia and Ornithischia of the Central Provinces of India. Palaeontographica Indica N.S. XXI, pp.4–5.Google Scholar
  60. Waggoner, B.M. (1996) The first fossil cyphoderiid testate amoeba, in Dominican Republic amber (Eocene Oligocene): PaleoBios, v.17, pp.17–19.Google Scholar
  61. Warner, B.G. (1990) Testate Amoebae (Protozoa). Methods in Quaternary Ecology. Geoscience, Canada 5. Geol. Assoc. Canada, pp.65–74.Google Scholar

Copyright information

© Geological Society of India 2017

Authors and Affiliations

  • Hemant Sonkusare
    • 1
  • Bandana Samant
    • 1
  • D. M. Mohabey
    • 2
  1. 1.Post Graduate Department of GeologyRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia
  2. 2.Ex-Geological Survey of IndiaNagpurIndia

Personalised recommendations