Skip to main content
Log in

Geochemistry of Mesoproterozoic Deonar Pyroclastics from Vindhyan Supergroup of Central India: Evidences of felsic magmatism in the Son valley

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Deonar Pyroclastics of Semri Group in the Vindhyan Supergroup originated as a result of violent and explosive intrabasinal submarine volcanism during the Mesoproterozoic period. These pyroclastics are rhyolitic to rhyodacitic in composition, comprised of banded, massive, pumiceous flow, breccia, vitric tuff, lapilli and volcanic bomb. The pyroclastic deposits represent welded and non-welded ignimbrites, exhibit typical eutaxitic texture. Mantle normalized multi-element patterns show enrichment in LILs and depletion in HFSFs. Ti, Nb and REE contents show close correlation with Zr, indicating their immobile character. HFSEs and Th/Nb, La/Nb and Zr/Nb values indicate contamination and these signatures represent mixing between mantle-derived rocks and the average continental crust. Deonar Pyroclastics reflect continental rift environment. Felsic magma plausibly generated by underplating of the mature Proterozoic crust of the Indian craton (which acted like a ‘heating lens’) resulted in extensive melting of metabasalt in the lower crustal levels. The high heat flow beneath the Indian shield accentuated heat generation which led to extensive partial melting of metabasalts. Thus, generation of rhyolitic magma occurred along the reactivated deep seated fractures and rifting of the craton, resulting in the explosive intra-basinal felsic vulcanicity in the Vindhyan basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S.K. (2001) Geodynamic setting of the Central Indian Tectonic Zone in central, eastern and northeastern India. Geol. Surv. India, Spec. Publ., v.64, pp.17–35.

    Google Scholar 

  • Acharyya, S.K. and Roy, A. (2000) Tectonothermal history of the central Indian Tectonic Zone and Reactivation of Major Faults/shear Zones. Jour. Geol. Soc. India, v.55, pp.239–246.

    Google Scholar 

  • Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur district. Mem. Geol. Surv. India, v.62 (2), pp. 141–250.

    Google Scholar 

  • Betts, P. G., Lister, G. S. and O’dea, M. G. (1998) Asymmetric extension of the Middle Proterozoic lithosphere, Mount Isa terrane, Queensland, Australia. Tectonophysics, v.296 (3–4), pp. 293–316.

    Article  Google Scholar 

  • Bhattacharya, Ajit, (Ed.) (1996) Recent advances in Vindhyan Geology. Mem. Geol. Soc. India, no.36, 331p.

  • Bose, P.K., Sarkar, S., Chakrabarty, S. and Banerjee, S. (2001) Overview of Meso- to Neoproterozoie evolution of the Vindhyan basin, Central India. Sediment. Geol., v.142, pp.395–419.

    Article  Google Scholar 

  • Brophy, J.G. (2008) A study of rare earth element (REE)–SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib. Mineral. Petrol., v.156, pp.337–357.

    Article  Google Scholar 

  • Bull, K. F. and Mcphic, J. (2007) Fiamme textures in volcanic successions: Flaming issues of definition and interpretation. Jour.Volcanol. Geothermal Res., v.164, pp.205–216.

    Article  Google Scholar 

  • Chakrabarti, R., Basu, A.R. and Chakrabarti, A. (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, Central India. Precambrian Res., v.159, pp.260–274.

    Article  Google Scholar 

  • Chakraborty, P.P., Dey, S. and Mohanty, S.P., (2010) Proterozoic platform sequences of peninsular India: Implications towards basin evolution and Supercontinent assembly. Jour. Asian Earth Sci., v.39, pp.589–607.

    Article  Google Scholar 

  • Chaudhuri, A. and Basu, A. (1990) Nature of volcanism and related gold mineralization at Suda, Sidhi district, Madhya Pradesh. Precambrian of Central India. Geol. Surv. India, Spec. Publ., pp.549–562.

    Google Scholar 

  • Chaudhuri, A.K. and Chanda, S.K. (1991) The Proterozoic basin of the Pranhita-Godavari valley: an overview. In: S.K. Tandon, C.C. Pant and S.M. Casshyap (Eds.), Sedimentary Basins of India, Tectonic Context. Gyanodayan Prakashan, Nainital, pp.13–29.

    Google Scholar 

  • Chaudhuri, A.K., Mukhopadhyay, J., Deb, S.P. and Chanda, S.K. (1999) The Neoproterozoic Cratonic Successions of Peninsular India. Gondwana Res., v.2, pp.213–225.

    Article  Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. v.104, pp.1–37.

    Article  Google Scholar 

  • Condie, K.C. (1997) Plate tectonics and crustal evolution. Fourth edition, Butterworth-Heinmann, Oxford, 282p.

    Google Scholar 

  • Coppin F., Berger G., Bauer A., Castet S., and Loubet M. (2002) Sorption of lanthanides on smectite and kaolinite. Chem. Geol., v.182, pp.57–67.

    Article  Google Scholar 

  • Das L.K. and Mall R. P. (1995) Geophysical studies in the Son valley and Gangetic plains. Geol. Surv. India Spec. Publ., v.10, pp.260–284.

    Google Scholar 

  • Das, K., Yokoyama, K., Chakraborty, P.P. and Sarkar, A. (2009) EPMA U-Th- Pb Monazite Dating and Trace Element Geochemistry of Tuff Units from the Basal Part of Chhattisgarh and Khariar Basin, Central India: Implications for Basin Initiation and Depositional Contemporaneity. Jour. Geol., v.117, pp.88–102.

    Article  Google Scholar 

  • District Resource Map-Sidhi district, Madhya Pradesh (2002) Geological Survey of India, 1st Edition.

    Google Scholar 

  • Drummond, M. S., Defant, M. J. and Kepezhinskas, P. K. (1996). Petrogenesis of slab-derived trondhjemites tonalite dacite/adakite magmas. Tran. Royal Soc. Edinburgh: Earth Sci., v.87, pp.205–215.

    Article  Google Scholar 

  • Edwards, G.R. and Hodder, R.W. (1991). A semi -quantitative model for fractionation of rhyolite from rhyodacite in a compositionally altered Archaean volcanic complex, Superior Province, Canada. Precambrian Res., v.50, pp.49–6.

    Article  Google Scholar 

  • Foley, S. F., Venturelli, G., Green, D. H. and Toscani, L. (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci. Rev., v. 24, pp. 81–134.

    Article  Google Scholar 

  • Foley, S., Tiepolo, M. and Vannucci, R. (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, v.417, pp.837–840.

    Article  Google Scholar 

  • Fulignati, P., Gioncada, A., and Sbrana, A. (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy). Jour.Volcanol. Geotherm. Res., v.88, pp.325–342.

    Article  Google Scholar 

  • Gupta, S., Jain, K.C., Srivastava, V.C. and Mehrotra, R.D., (2003) Depositional Environment and Tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin. Jour. Palaeontol. Soc. India, v.48, pp.181–190.

    Google Scholar 

  • Hanson, G.N. (1980). Rare earth elements in petrogenetic studies of igneous rocks. Ann. Rev. Earth Planet. Sci., v.8, pp.371–406.

    Article  Google Scholar 

  • Hashigushi, H., Yamada, R. and Inque, T. (1983) Fractional application of low Na2O anomalies in footwall acid lava for delimiting promising areas around the Kosaka and Fukazawa Kuroko deposits. Akita Prefectural, Japan. Econ. Geol. Monograph, v.5, pp.387–394.

    Google Scholar 

  • Hildreth, W. (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. Jour. Geophy. Res., v.86, pp.10153–10192.

    Article  Google Scholar 

  • Huang, W.L. and Wyllie, P.J. (1986). Phase relationships of gabbro-tonalitegranite- water at 15kbar with applications to differentiation and anatexis. Amer. Mineralogist., v.71, pp.301–306.

    Google Scholar 

  • Jiang, S. Y., Wang, R. C, Xu X. S., Zhao, K. D. (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarinehydrothermal systems. Phys. Chemis. Earth, v.30, pp.1020–1029.

    Article  Google Scholar 

  • Kaila, K.L., Murty, P.R.K. and Mall, D.M. (1989) The evolution of the Vindhyan Basin vis-a-vis the Narmada-Son Lineament, central India, from deep seismic soundings. Tectonophysics, v.162(3/4), pp.277–289.

    Article  Google Scholar 

  • Kumar, V. (1993) Petrography and geochemistry of Jungel metavolcanics, Bijawar greenstone belt, Central India: a picritic basalt low K-andesite association. Jour. Geol. Soc. India, v.41, pp.9–19.

    Google Scholar 

  • Law, Yashvir Dutt (1954) Contributions to the Geology of Son Valley in Vindhya Pradesh. Quart. Jour. Geol. Min. Metall. Soc. India, v.26, pp.65–79.

    Google Scholar 

  • Lewis, A. J., Palmer, M. R., Sturchio, N. C. and Kemp, A. J. (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park. Geochim. Cosmochim. Acta, v.61, pp.695–706.

    Article  Google Scholar 

  • Macdonald, R., Mcgarvie, D.W., Pinkerton, H., Smith, R.L. and Palacz, A. (1990). Petrogenetic evolution of the Torfajokull volcanic complex, Iceland I. Relationship between the magma types. Jour. Petrol., v.31, pp.429–459.

    Article  Google Scholar 

  • Mall, D.M., Singh, A.P., and Sarkar, D., 2005. Structure and seismotectonics of Satpura, Central India, Curr. Sci., v.88, pp.1621–1627.

    Google Scholar 

  • Malone, S. J., Meert, J.G., Banerjee, D. M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R., and Sohl, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: A ca.1000Ma Closure age for the Purana Basins?, Precambrian Res., v.164, pp.137–159.

    Article  Google Scholar 

  • Martin, H., Smithies, R.H., Rappc, R., Moyend, J.-F. and Champion, D. (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v.79, pp.1–24.

    Article  Google Scholar 

  • Mc Lennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: B.R. Lipin and G.A. McKay (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineral. Soc. Amer., Rev. Mineral., v.21, pp.169–200.

    Google Scholar 

  • Menuge, J.F., Brewer, T.S. and Seeger, C.M. (2002) Petrogenesis of metaluminous A-type rhyolites from the St. Francois Mountains, Missouri and the Mesoproterozoic evolution of the southern Laurentian margin. Precambrian Res., v.113, pp.269–291.

    Article  Google Scholar 

  • Mishra, Meenal and Sen, Shinjana (2008) Geochemistry and origin of Proterozoic Porcellanitic Shales from Chopan, Vindhyan Basin, India. Indian Jour. Geol., v.80 (1–4), pp. 157–171.

    Google Scholar 

  • Mishra, D.C., Singh, B., Tiwari, V.M., Gupta, S.B. and Rao, M.B.S.V. (2000) Two cases of continental collision and related tectonics during the Proterozoic period in India insight from gravity modelling constrained by seismic and magnetotelluric studies. Precambrian Res., v.99, pp.149–169.

    Article  Google Scholar 

  • Mishra, D.C. (2011) Long hiatus in Proterozoic sedimentation in India: Vindhyan, Cuddapah and Pakhal basins - a plate tectonic model. Jour. Geol. Soc. India, v.77, pp.17–25.

    Article  Google Scholar 

  • Moghazi, A.M. (2003) Geochemistry and petrogenesis of a high K-calc alkaline Dokhan Volcanic suite, South Safaga, area, Egypt: the role of Late Neoproterozoic crustal extension. Precambrian Res., v.125, pp.161–178.

    Article  Google Scholar 

  • Mohr, P. (1992) Nature of the crust beneath mgmatically active continental rifts. Tectonophysics, v.213, pp.269–284.

    Article  Google Scholar 

  • Naganjaneyulu, K., and Santosh, M. (2010) The Central Indian Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Res., v.18, pp.547–564.

    Article  Google Scholar 

  • Nair, K.K.K., Jain, S.C. and Yedekar, D.B. (1995) Stratigraphy, Structure and Geochemistry of the Mahakoshal Greenstone Belt. Mem. Geol. Soc. India, v.31, pp.405–432.

    Google Scholar 

  • Nesbitt, H.W. and Young, G.M. 1982. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717.

    Article  Google Scholar 

  • Paikaray, S., Banerjee, S. and Mukherji, S. (2008) Geochemistry of Shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on Provenance, Tectonics and Paleoweathering. Jour. Asian Earth Sci., v.32 (1), pp. 34–48.

    Article  Google Scholar 

  • Pandey, O.P. and Agrawal, P.K. (1999) Lithospheric Mantle Deformation beneath the Indian Cratons. Jour. Geol., v.107, pp.683–692.

    Article  Google Scholar 

  • Patranabis, Deb, Sarbani, (2003) Proterozoic felsic volcanism in the Pranhita-Godavari valley, India: its implication on the origin of the basin. Jour. Asian Earth Sci., v.21, pp.623–631.

    Article  Google Scholar 

  • Patranabis, Deb, Sarbani Bickford, M.E., Hill, B., Chaudhuri, A.K. and Basu, A. (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ~ 500Ma adjustment in Indian Proterozoic stratigraphy. Jour. Geol., v.115, pp.407–415.

    Article  Google Scholar 

  • Peate, D.W., Hawkesworth, C.J. and Mantovani, M.S.M. (1992) Chemical stratigraphy of the Paraná lavas (S. America): classification of magma types and their spatial distribution. Bull. Volcanol., v.55, pp.119–139.

    Article  Google Scholar 

  • Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India (vol. I) Geological Society of India, Bangalore, 556p.

    Google Scholar 

  • Rapp, P.P. and Watson, E.B. (1995) Dehydration melting of metabasalt at 8–32 kbar: implication for continental growth and crust-mantle recycling. Jour. Petrol., v.36 (4), pp. 891–931.

    Article  Google Scholar 

  • Rasmussen, B., Bose, P.K., Fletcher, I.R. and Mcnaughton, N.J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: possible implications for early evolution of animals. Geol., v.3, pp.103–106.

    Article  Google Scholar 

  • Ray, J.S., Martin, M. W., Veizer, J. and Bowring, S. A. (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology, v.30, pp.131–134.

    Article  Google Scholar 

  • Rogers, J.J.W., Santosh, M, 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Res., v.15, pp.373–380.

    Article  Google Scholar 

  • Rollinson, H. (1993) Using Geochemical Data: Evolution, Presentation, Interpretation, Longman Scientific and Technical, UK, 344 p.

    Google Scholar 

  • Ross R. Large, Bruce Gemmell, J., Holger Paulick and David L. Huston (2001) The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with VHMS Deposits. Econ. Geol., v.96, pp.1–14

    Google Scholar 

  • Roy, A. and Bandyopadhyay, B.K. (1990) Cleavage development in Mahakoshal Group of rocks of Sleemanabad-Sihora area, Jabalpur District, Madhya Pradesh. Indian Minerals, v.44 (2–3), pp.111–128.

    Google Scholar 

  • Roy, A. and Devarajan, M.K. (2000) A reappraisal of the stratigraphy and tectonics of the Proterozoic Mahakoshal belt, Central India. Precambrian Crust in Eastern and Central India. UNESCO-IUGS-IGCP-368, Geol. Surv. India Spec. Publ., v.17, pp.79–97.

    Google Scholar 

  • Roy, A. and Hanuma Prasad, M. (2001) Precambrian of Central India: a possible Tectonic model. Geol. Surv. India Spec. Publ., v.64, pp.177–197.

    Google Scholar 

  • Roy, A., Hanuma Prasad, M. and Devarajan, M.K. (2002) Palaeoproterozoic low pressure metamorphism, deformation and syn-kinematic granite emplacement in the Proterozoic Mahakoshal supracrustal belt of Central India. Gondwana Res., v.5, pp.489–500.

    Article  Google Scholar 

  • Roy, A., Ramachandra, H.M. and Bandopadhyay, B.K., (2000) Supracrustal belts and their significance in the crustal evolution of Central India. Geol. Surv. India, Spec. Publ., no.55, pp.361–380.

    Google Scholar 

  • Roy, A., Sarkar, A., Jeyakumar, S., Aggrawal, S.K. and Ebihara, M. (2002) Mid-Proterozoic plume-related thermal event in Eastern Indian craton: evidence from trace elements, REE geochemistry and Sr–Nd isotope systematics of basic ultrabasic intrusive from Dalma Volcanic Belt. Gondwana Res., v.5, pp.133–146.

    Article  Google Scholar 

  • Ryan, A.B. and Baragar, W.R.A. (1987) Geochemistry, tectonic setting and mineralization of high potassium middle Proterozoic rocks in central Labrador, Canada. In: Pharaoh, T.C. et al. (Eds.) Geochemistry and Mineralization of Proterozoic Volcanic suites. Geol. Soc. Spec. Publ., v.33, pp.241–254.

    Article  Google Scholar 

  • Sage, R.P., Lightfoot, P.C. and Doherty, W. (1996) Bimodal cyclical Archean basalts and rhyolites from the Michipicoten (Wawa) greenstone belt, Ontario: geochemical evidence for magma contributions from the asthenosphere mantle and ancient continental lithosphere near the southern margin of the Superior Province. Precambrian Res., v.76, pp.119–153.

    Article  Google Scholar 

  • Saha, D. and Tripathy, V. (2012) Tuff beds in Kurnool subbasin, southern India and implications for felsic volcanism in Proterozoic intracratonic basins. Geoscience Frontiers, v.3 (4), pp. 429–444.

    Article  Google Scholar 

  • Sarkar, A., Boda, M.S., Kundu, H.K., Mamgain, V.V. and Ravishankar (1998) Geochronology and geochemistry of Mesoproterozoic intrusive plutonites from the eastern segment of the Mahakoshal greenstone belt, Central India. IGCP-368 Seminar on Precambrian Crust in Eastern and Central India, Bhubaneshwar, pp.82–85 (Abs).

    Google Scholar 

  • Schilling, J.G. (1966) Rare earth fractionation in Hawaiian volcanic rocks; Unpublished Ph.D. Thesis. Mass. Inst. Tech., (USA: Cambridge MA)

    Google Scholar 

  • Schmidt, R. (1981) Descriptive nomenclature and classification of pyroclastic deposits and fragments: recommendations of the IUGS Sub commission on the Systematics of igneous rocks. Geology, v.9, pp.41–43.

    Article  Google Scholar 

  • Singh, Jyoti, Chandrakala, K., Singh, A.P. and Mall, D.M. (2015) Structure and evolution of Satpura Gondwana Basin over Central Indian Tectonic Zone: inferences from seismic and gravity data. Jour. Indian Geophys. Union, v.19 (1), pp. 39–54

    Google Scholar 

  • Sommer, C.A., De Lima E.F., Stoll Nardi L.V., Graciano Figueiredo A.M. and Pireosan R. (2005) Potassic and low- and high -Ti mildly alkaline volcanism in the Neoproterozoic Ramada Plateau, southern most Brazil. Jour. South Amer. Earth Sci., v.18, pp.237–254.

    Article  Google Scholar 

  • Soni, S., Chakraborty, S. and Jain, V.K. (1987): Vindhyan Supergroup - A Review. In: B.P. Radhakrishnan (Eds.) Purana Basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.86–138.

    Google Scholar 

  • Sparks, R.S.J. (1976). Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology, v.23, pp.147–188

    Article  Google Scholar 

  • Srivastava, R.N., Srivastava, A.K., Singh, K.N. and Redcliffe (2003) Sedimentation and depositional environment of the Chopan Porcellanite Formation, Semri Group, Vindhyan Supergroup in parts of Sonbhadra district, Uttar Pradesh. Jour. Palaeontol. Soc. India, v.48, pp.167–179.

    Google Scholar 

  • Srivastava, V.K. (1977) Environmental significance of some depositional structures in the banded (Lower Vindhyan) of Mirzapur district, U.P. Jour. Indian Assoc. Sediment., v.1, pp.44–51.

    Google Scholar 

  • Stern, R.A., Hanson, G.N. and Shirey, S.B. (1989) Petrogenesis of mantle derived, LILE-enriched Archaean monzodiorite and trachyandesites (sanukotoids) in southwestern Superior Province. Can. Jour. Earth Sci., v.26, pp.1688–1712.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, v. 42, pp. 313–345.

    Article  Google Scholar 

  • Tatsumi, Y. and Eggins, S. (1995) Subduction Zone Magmatism. Frontiers in Earth Sciences. Blackwell Science, 211p.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985): The Continental Crust: Its Composition and Evolution. Blackwell, London, 311p.

    Google Scholar 

  • Thakur, K.S. and Shukla, R.S. (1990) Geochemistry of early Proterozoic metabasites and associated copper mineralization in Karamdia area in Mahakoshal Rift Basin, Shahdol district, Madhya Pradesh. Geol. Surv. India Spec. Publ., v.28, pp.512–526.

    Google Scholar 

  • Venkata Rao, K., Sri Rama, B.V. and Ramasastry, P. (1990) A geophysical appraisal of Mahakoshal Group of upper Narmada Valley. Geol. Surv. India Spec. Publ., v.28, pp.99–117.

    Google Scholar 

  • Verma S.P. (2012) Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geológicas, v.99 (2), pp. 79–93.

    Google Scholar 

  • Winchester, J.A. and Floyd, P.A. (1977). Geochemistry discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., v.20, pp.325–343.

    Article  Google Scholar 

  • Wyllie, P.J. (1983). Experimental studies on biotite and muscovite granites and some crustal magmatic sources. In: A.P. Atherton and C.D. Gibble (Eds.), Migmatites, Melting and Metamorphism, Proc. Geochemical Group, Mineralogical Soc., Shiva Publishing Ltd., Nantwich, pp.12–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari B. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Srivastava, V., Sinha, P.K. et al. Geochemistry of Mesoproterozoic Deonar Pyroclastics from Vindhyan Supergroup of Central India: Evidences of felsic magmatism in the Son valley. J Geol Soc India 89, 375–385 (2017). https://doi.org/10.1007/s12594-017-0618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0618-7

Navigation