Skip to main content
Log in

Deep earth electrical conductivity-depth profiles around African geomagnetic equator using solar quiet currents

  • Published:
Journal of the Geological Society of India

Abstract

Electrical conductivity structure of the Earth’s deep interior has been successfully mapped out down to approximately 1500 km around the geomagnetic dip equatorial regions of Africa using solar quiet-day ionospheric currents. Spherical harmonic analysis (SHA) was employed in separating the internal and external field contributions to the solar quiet variations. Transfer function was used for each of the external and internal pairs to compute the conductivity-depth profile for the region. Calculated average electrical conductivity values were evidently higher than obtained in other parts of the world farther away from the geomagnetic equator. Sq current vortex foci are observed very close to the geomagnetic equator. Depth of penetration was greatly enhanced. Stations on latitudes less than 1° from the geomagnetic equator show higher electrical conductivity when compared with that situated more than 4° away from it at various corresponding depths. Evidence of discontinuities in the earth layers were also noted at some depths. Highly conductive layers were delineated around 400 km depth and beyond 1200 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbo, G.A. and Okeke, F.N. (2009) Preliminary results from 3-D approach to ionospheric conductivities in the equatorial region. Pacific Jour. Sci. Tech., v.10(1), pp.674–679.

    Google Scholar 

  • Arora, B.R., Campbell, W.H. and Schiffmacher, E.R. (1995) Upper Mantle Electrical Conductivity in the Himalayan Region. Jour. Geomagnet. Geoelect., v.47(7), pp.653–665.

    Article  Google Scholar 

  • Banks, R.J. (1972) The overall conductivity distribution of the Earth. Jour. Geomag. Geoelectr., v.24, pp.337–351.

    Article  Google Scholar 

  • Campbell, W.H. (1987) The upper mantle conductivity analysis method using observatory records of geomagnetic field. Pure Appld. Geophys., v.125, pp.427–457.

    Article  Google Scholar 

  • Campbell, W.H. (1989) The regular geomagnetic-field variations during quiet solar conditions. In: Jacobs, J. (Ed.), Geomagnetism: Calif, S.D. Academic. no.3, pp.386–460.

    Google Scholar 

  • Campbell, W.H. (1997) Introduction to geomagnetic fields. Cambridge Univ. Press.

    Google Scholar 

  • Campbell, W.H. and Anderssen, R.S. (1983) Conductivity of the subcontinental upper mantle: an analysis using quiet- day records of North America. Jour. Geomag. Geoelectr., v.35, pp.367–382.

    Article  Google Scholar 

  • Campbell, W.H. and Schiffmacher, E.R. (1985) Quiet Ionospheric Currents of the Northern Hemisphere Derived From Geomagnetic Field Records. Jour. Geophy. Res., v.90, A7, pp.6475–6486.

    Article  Google Scholar 

  • Campbell, W.H. and Schiffmacher, E.R. (1987) Quiet ionospheric currents and Earth conductivity profile computed from quiet-time geomagnetic field changes in the region of Australia. Aust. Jour. Phys., v.40, pp.73–87.

    Article  Google Scholar 

  • Campbell, W.H. and Schiffmacher, E.R. (1988) Upper mantle electrical conductivity for seven subcontinental regions of the Earth. Jour. Geomagnet. Geoelectr., v.40, pp.1387–1406.

    Article  Google Scholar 

  • Campbell, W.H., Barton, C.E., Chamalaun, F.H. and Welsh, W. (1998) Quietday ionospheric currents and their application to upper mantle conductivity in Australia. Earth Planet. Space, v.50, pp.347–360.

    Article  Google Scholar 

  • Chandrasekhar, E. (2011) Regional Electromagnetic Induction Studies Using Long Period Geomagnetic Variations. Chapter 3, in The Earth’s Magnetic Interior, Vol. 1, edited by E. Petrovský, E. Herrero-Bervera, T. Harinarayana and D. Ivers, pp.31–42, Springer Dordrecht Heidelberg London, New York.

    Chapter  Google Scholar 

  • Chapman, S. (1919) The solar and lunar diurnal variation of the Earth magnetism. London: Phil. Trans. Roy. Soc., v.A(218), pp.1–118.

    Article  Google Scholar 

  • Chapman, S., Bartels, J. (1940) Geomagnetism. Oxford Univ. Press, London.

    Google Scholar 

  • Constable, S.C and Duba, A. (1990) The electrical conductivity of olivine, a dunite and the mantle. Jour. Geophys. Res., v.95, pp.6967–6978.

    Article  Google Scholar 

  • Didwall, E.M. (1984) The electrical conductivity of the upper mantle as estimated from satellite magnetic field data. Jour. Geophys. Res., v.89(B1), pp.537–542.

    Article  Google Scholar 

  • Drury, M.J. and Niblett, E.R. (1980) Buried ocean crust and continental crust geomagnetic induction anomalies: a possible association. Canadian Jour. Earth Sci., v.17, pp.961–967.

    Article  Google Scholar 

  • Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., v.25, pp.297–356.

    Article  Google Scholar 

  • Gauss, C.F. (1838) Allgemeine Theories des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischem Vereins in Yahr, edited by C. F. Gauss and W. Weber: translated from the German by E. Sabine and R. Taylor. Sci. Mem. Select. Trans. For. Acad. Learned Soc. Foreign J. 2: 184–251, 1841.

    Google Scholar 

  • Gough, D.I. (1983) Electromagnetic geophysics and global tectonics. Jour. Geophys. Res., v.88, pp.3367–3377.

    Article  Google Scholar 

  • Jackson, I. and Ridgen, S. (1997) Composition and temperature of the Earth’s mantle: seismological models interpreted through experimental studies of mantle minerals. In: The Earth’s mantle, composition, structure and evolution. Edittedbi I. Jackson. Cambridge University Press, London.

    Google Scholar 

  • Jones, A.G. (1983) On the equivalent of the “Niblette” and “Bostick” transformations in magnetelluric method. Jour. Geophys. Res., v.53, pp.72–73.

    Google Scholar 

  • Katsura, T. and Ito, E. (1989) The System Mg2Si04-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinet and spinel. Jour. Geophys. Res., v.94(15), pp.663–670.

    Google Scholar 

  • Maxwell, J.C. (1873) Treatise on Electricity and Magnetism. Cambridge Univ. Press.

    Google Scholar 

  • Neal, S. L., Mackie, R. L., Larsen, J. C. and Schultz, A. (2000) Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. Jour. Geophys. Res., v.105(B4), pp.8229–8242, doi:10.1029/1999JB900447.

    Article  Google Scholar 

  • Obiekezie, T.N. and Okeke, F.N. (2010) Upper Mantle Conductivity Determined from the Solar Quiet Day Ionospheric Currents in the Dip Equatorial Latitudes of West Africa. Moldavian Jour. Physical Sci., v.9(2), pp.199–204.

    Google Scholar 

  • Obiora D.N., Okeke F.N. and Yumoto K. (2013) Determination of the crustmantle electrical conductivity-depth structure of Niger Delta using solar quiet day (Sq) current. Internat. Jour. Physical Sci., v.8(7), pp.272–276.

    Google Scholar 

  • Obiora, D.N. and Okeke, F.N. (2013) Crustal and upper mantle electrical conductivity structure in North Central Nigeria. Internat. Jour. Physical Sci., v.8(42), pp.1975–1982.

    Google Scholar 

  • Obiora, D.N., Okeke, F.N., Yumoto, K. and Agha, S.O. (2014) Mantle electrical conductivity profile of Niger delta region. Jour. Earth Syst. Sci., v.123(4), pp.827–835.

    Article  Google Scholar 

  • Onwumechili, C.A. and Ogbuehi, P.O. (1967) Analysis of the magnetic field of the equatorial electrojet. Jour. Atmos. Terr. Phys., v.29, pp.553–566.

    Article  Google Scholar 

  • Ritz, M. (1984) Inhomogeneous structure of the Senegal lithosphere from deep magnetelluric soundings. Jour. Geophys. Res., v.89, pp.11317–11331.

    Article  Google Scholar 

  • Rycroft, M.J., Kartalev, M.D., Papitashvili, V.O. and Keremidaska, V.I. (2005) On the effect of near equatorial thunderstorms on the global distribution of ionospheric potential. Adv. Space Res., v.35, pp.1450–1460.

    Article  Google Scholar 

  • Schmucker, U. (1970) An introduction to induction anomalies. Jour. Geomag. Geoelectr., v.2, pp.9–33.

    Article  Google Scholar 

  • Schmucker, U. (1987) Substitute conductors for electromagnetic response estimates. Pure Appld. Geophys., v.125, pp.341–367.

    Article  Google Scholar 

  • Shuster, A. (1889) The diurnal variation of terrestrial magnetism. Phil. Trans. Lond. A180: 467–518.

    Article  Google Scholar 

  • Web address: http://home.iprimus.com.au/toddemslie/darwin-dxpedition.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Ugbor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugbor, D.O., Okeke, F.N. Deep earth electrical conductivity-depth profiles around African geomagnetic equator using solar quiet currents. J Geol Soc India 89, 344–350 (2017). https://doi.org/10.1007/s12594-017-0609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0609-8

Navigation