Skip to main content

Advertisement

Log in

Population based binary reclassification of Indian standard landslide hazard model

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

GIS complemented statistical classification techniques yield good result in predicting landslide hazards. Indian standard landslide hazard model follows guidelines formulated by the Bureau of Indian Standards (BIS, 1998), in which the study area is divided into five categories, ranging from very low hazard zone to very high hazard zone on fixed numerical ratings. For land use planners, “moderate hazard zone” proves vague and indecisive. In the present study, BIS based landslide hazard zones are demarcated for 140 sq. km area for a road corridor in East and North Sikkim that shows 21.96%, 53.14%, 22.80% and 2.10% for ‘Low Hazard Zone’, ‘Moderate Hazard Zone’, ‘High Hazard Zone’ and ‘Very High Hazard Zone’ respectively. This classification scheme has been reclassified to binary system based on population distribution and defining the cut-off by evaluation techniques of the ROC. The reclassification eliminates “moderate hazard zone”, minimizing the Type-II error and becomes more acceptable for future land use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleotti, P. and Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives. Bull. Engg. Geol. Environ., v.58, pp.21–44.

    Article  Google Scholar 

  • Anbalagan, R. (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Engg. Geol., v.32, pp.269–277.

    Article  Google Scholar 

  • Ayalew, L. and Yamagishi, H. (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, v.65, pp.15–31.

    Article  Google Scholar 

  • BIS (1998) Preparation of Landslide Hazard Zonation Maps in Mountainous Terrains-Guidelines, Part 2 Macro-Zonation, IS 14496 (Part-2) Bureau of Indian Standards, Government of India, New Delhi

    Google Scholar 

  • Brenning, A. (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Sciences, v.5, pp.853–862.

    Article  Google Scholar 

  • Carranza, E.J.M. (2009) Geochemical anomaly and mineral prospectivity mapping in GIS Handbook of exploration and environmental geochemistry, 11. Elsevier

    Google Scholar 

  • Carrara, A., Crosta, G. and Frattini, P. (2008) Comparing models of debrisflow susceptibility in the alpine environment. Geomorphology, v.94, pp.353–378.

    Article  Google Scholar 

  • Dai, F.C. and Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, v.42(3-4), pp.213–228.

    Article  Google Scholar 

  • Das, I., Sahoo, S., Westen, C.v., Stein, A. and Hack, R. (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, v.114, pp.627–637.

    Article  Google Scholar 

  • Drummond, C. and Holte, R.C., 2006. Cost curves: An improved method for visualizing classifier performance. Mach Learn, v.65, pp.95–130.

    Article  Google Scholar 

  • Dymond, J.R., DeRose, R.C. and Harmsworth, G.R. (1995) Automated mapping of land components from digital elevation data. Earth Surface Processes and Landforms, v.20, pp.131–137.

    Article  Google Scholar 

  • Ercanoglu, M. and Gokceoglu, C. (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engg. Geol., v.75(3-4), pp.229–250.

    Article  Google Scholar 

  • Frattini, P., Crosta, G. and Carrara, A. (2010) Techniques for evaluating the performance of landslide susceptibility models. Engg. Geol., v.111, pp.62–72.

    Article  Google Scholar 

  • Gallant, J.C. and Wilson, J.P. (2000) Primary topographic attributes. In: J.C. Gallant and J.P. Wilson (Editors), Terrain analysis–Principles and Applications. Wiley, New York, pp.51–85.

    Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. and Ardizzone, F. (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology, v.72, pp.272–299.

    Article  Google Scholar 

  • Hansen, A. (1984) Landslide hazard analysis. In: D. Brunsden and D.B. Prior (Editors), Slope Instability. Wiley, New York, pp.523–602.

    Google Scholar 

  • Isaaks, E.H. and Srivastava, R.H. (1989) An Introduction to Allied Geostatistics. Oxford Univ. Press, New York

    Google Scholar 

  • Komac, M., 2006. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology, v.74(1-4), pp.17–28.

    Article  Google Scholar 

  • Lee, S., Ryu, J.H., Won, J.S. and Park, H.J. (2004) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Engig. Geol., v.71, pp.289–302.

    Article  Google Scholar 

  • McKillup, S. and Dyar, M.D. (2010) Geostatistics Explained-An introductory guide to earth scientists. Cambridge University Press, new York, 396p.

    Book  Google Scholar 

  • Pachauri, A.K. and Pant, M. (1992) Landslide hazard mapping based on geological attributes. Engg. Geol., v.32(1), pp.81–100.

    Article  Google Scholar 

  • Paul, C. and Ghosal, T.B. (2009) An inventory of major landslides in Sikkim-Darjeeling Himalaya. Geol. Surv. India, Spec. Publ., no.94, Kolkata.

    Google Scholar 

  • Pike, R.J. (2000) Geomorphometry—diversity in quantitative surface analysis. Progress in Physical Geography, v.24, pp.1–20.

    Google Scholar 

  • Provost, F. and Fawcett, T. (1997) Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions., Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp.43–48.

    Google Scholar 

  • Rowbotham, D.N. and Dudycha, D. (1998) GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphology, v.26(1-3), pp.151–170.

    Article  Google Scholar 

  • Sarkar, K., Singh, T.N. and Verma, A.K., 2012. A numerical simulation of landslide-prone slope in Himalayan region-a case study. Arabian Jour. Geosci., v.5(1), pp.73–81.

    Article  Google Scholar 

  • Sarkar, S., Kanungo, D.P. and Mehrotra, G.S. (1995) Landslide hazard zonation: a case study in Garhwal Himalaya, India. Mountain Research and Development, v.15, pp.301–309.

    Article  Google Scholar 

  • Schuster, R.L. and Fleming, R.W. (1986) Economic losses and fatalities due to landslides. Bull. Assoc. Engg. Geol., v.23, pp.11–28.

    Google Scholar 

  • Singh, T.N., Verma, A.K. and Sarkar, K. (2010) Static and dynamic analysis of a landslide. Geomatics, Natural Hazards and Risk, v.1(4), pp.323–338.

    Article  Google Scholar 

  • Slaby, A. (2007) ROC Analysis with Matlab, 29th Int. Conf. on Information Technology Interfaces, Cavtat, Croatia, pp.191–196.

    Google Scholar 

  • Smith, G.-H. (1935) The relative relief of Ohio. Geographical Rev., v.25(2), pp.272–284.

    Article  Google Scholar 

  • Suzen, M.L. and Doyuran, V. (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Engg. Geol., v.71, pp.303–321.

    Article  Google Scholar 

  • van Westen, C.J., Castellanos, E. and Kuriakose, S.L. (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engg. Geol., v.102(3-4), pp.112–131.

    Article  Google Scholar 

  • Varnes, D.J. (1984) Landslide Hazard Zonation: a Review of Principles and Practice. Review Report., UNESCO, Paris.

    Google Scholar 

  • Visher, G.S., 1969. Grain size distributions and depositional processes. Jour. Sediment. Petrol., v.39(3), pp.1074–1106.

    Google Scholar 

  • Yalcin, A., Reis, S., Aydinoglu, A.C. and Yomralioglu, T. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for and slide susceptibility mapping in Trabzon, NE Turkey. Catena, v.85, pp.274–287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Som.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar N, T., Hindayar, J.N., Mohan, M. et al. Population based binary reclassification of Indian standard landslide hazard model. J Geol Soc India 89, 175–182 (2017). https://doi.org/10.1007/s12594-017-0581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0581-3

Navigation