Skip to main content
Log in

Geological introduction to strontium-rich sub-soil brine with emphasis on the Little Rann of Kutch and Bhavnagar, Gujarat

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The methodology for green mining operation, one that extracts minerals from waste brine water for eco-friendly products, is appealing. Little Rann of Kutch (LRK) and the sites near Bhavnagar associated with producing sub soil brine water which contain strontium up to 215 mg/L. This value is significant considering its value in sea water (~8 mg/L). The high-strontium brines also contain elevated lithium (up to 2.98 mg/L) and uranium (up to 0.1 mg/L). The occurrence of strontium in the India’s brine water is poorly understood and inadequately represented in the literature. The objectives of this report, therefore, are to illustrate where strontium-rich brine waters occur in Gujarat (India). The investigation of strontium, lithium and uranium in sub-soil brine was accomplished by the ICP-OES instrument. We have checked the pH, density, specific gravity and Degree Bowme (DB’) of the all samples. Alkali and alkaline earth metals like Na, K, Mg, Ca and Ba; metalloid B; transition element like Zn, Cr and Fe; heavy metals like Cd, Pb and Ni were also analysed for toxicity evaluation and anion Cl and SO4 –2 were analysed by classical methods. Field wise, there is considerable variation in strontium, lithium and uranium in sub-soil brine water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aral, H. and Vecchio-Sadus, A. (2008) Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf., v.70, pp.349–356.

  • Collins, A. G. (1976) Lithium Abundance in Oilfield Waters; in Lithium Resources and Requirements by the Year 2000, J.D. Vine (ed.), U.S. Geological Survey, Professional Paper 1005, pp.116–123.

    Google Scholar 

  • Dave, H. M., Syamasundar, K. and Rao, V. S. (1965) Minor Constituents of Indian Sea Waters. Ind. J. Chem., v.3(3), pp.141–142.

    Google Scholar 

  • Dave, H. M., Baxi, D. R. and Datar, D. S. (1967) Search for Source of Iodine in India. Salt Research & Industry, v.4(2), pp.61–64.

    Google Scholar 

  • Dresel, P. E. and Rose, A. W. (2010) Chemistry And Origin Of Oil And Gas Well Brines In Western Pennsylvania, The Pennsylvania State University.

    Google Scholar 

  • Evans, K. (2008) An Abundance of Lithium; Industrial Minerals, July, pp. 48–55.

    Google Scholar 

  • Evans, K. (2010) Lithium’s Future Supply and Demand; The Northern Miner, v.96, pp.11–12.

  • Fontes, J. C. and Matray J. M. (1993b) Geochemistry and origin of formation brines from the Paris Basin, France. 1 Brines associated with Triassic salts. Chem. Geol., v.109, pp.149–175.

    Article  Google Scholar 

  • Garrett, D. E. (2004) Handbook of Lithium and Natural Calcium Chloride; Elsevier Academic Press, Oxford, United Kingdom, pp.488.

    Google Scholar 

  • Garrett, D. E., Calif, O. and Laborde, M. (1981) Process For Recovering Lithium From Brine By Salting Out Lithium Sulfate Monohydrate, New York, NY. US Patent-4,287, 1638.

    Google Scholar 

  • Goodenough, R. D. (1966) Recovering Strontium Chloride from Brine, Midland, Mich. US Patent-3,239,318.

    Google Scholar 

  • Hamdi-Aissa, B., Valles, V., Aventurier, A. and Ribolzi, O. (2004) Soils and Brine Geochemistry and Mineralogy of Hyperarid Desert Playa, Ouargla Basin, Algerian Sahara. Arid Land Res. Manag., v.18, pp.103–126.

  • Heir, K. S. and Billings, G. K. (1970) Lithium. In: Handbook of Geochemistry (ed. KH edepohl), vol. II-1, 3B–3O, Springer-Verlag, Berlin.

    Google Scholar 

  • Hitchon, B., Underschultz, J. R. and Bachu, S. (1993) Industrial Mineral Potential of Alberta Formation Waters; Alberta Research Council, Alberta Geological Survey, Open File Report 1993-15, pp.85.

    Google Scholar 

  • Kappanna, A. N. and Rao, V. S. (1962) Iodine content of Marine Algae from Gujarat Coast. J. Sci. & Ind. Res., v.21B (11), pp. 559–560.

    Google Scholar 

  • Kharaka, Y. K., Maest, A. S., Carothers, W.W., Law, L. M., Lamothe, P. J. and Fries, T. L. (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome Basin, USA. Appl. Geochem., v.2, pp.543–561.

    Article  Google Scholar 

  • Klimas, A. and Mališauskas, A. (2008) Boron, fluoride, strontium and lithium anomalies in fresh groundwater of Lithuania. Geologija, v.50, pp.114–124.

  • Li, X. Q., Hou, D. J. and Zhang, A.Y. (2001) Advancement of the Geochemical Study of Oilfield Water. Geological Science and Technology Information, v.20(2), pp.51–54.

    Google Scholar 

  • Lu, C. X. (1978) Ion-Combination Characteristics of Some Oil Field Waters from China. Geochimica, V.2, pp.124–134.

    Google Scholar 

  • Lydia, M. and Kaskey, J. (2012) “Lithium Boom Spurs Production From Brine: Commodities.” Bloomberg news, September 21. Accessed November 20, 2012. http://www.bloomberg.com/news/articles/2012-09-19/lithiumboom-spurs-production-from-california-brine-commodities.html

  • Magee, J. W. (1991) Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southwestern New South Wales, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.84, pp.3–42.

    Article  Google Scholar 

  • Millot, R. and Négrel, P. (2007) Multi-isotopic tracing (ä7Li, ä11B, 87Sr/86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France. Chem. Geol., v.244, pp.664–678.

    Article  Google Scholar 

  • Moote, T. P. and Reed, R. L. (1985) Removal and Recovery of Magnesium, Strontium and Barium from Brines, Tulsa, Okla. US patent 4,495,160.

    Google Scholar 

  • Moraga, A., Chong, G., Fortt, M. A. and Henriquez, H. (1974) Estudio geologico del salar de Atacama, Provincia de Antofagasta. Boletýn del Instituto de Investigaciones Geologicas, v.29, pp.1–56.

  • Peterman, Z. E., Thamke, J., Futa, K. and Preston, T. (2012) Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA. Appl. Geochem., v.27, pp.2403–2408.

  • Polastro, R. M., Cook, T. A., Roberts, L. N. R., Schenk, C. J., Lewan, M. D., Anna, L. O., Gaswirth S. B., Lillis, P. G., Klett, T. R. and Charpentier, R. R. (2008) Assessment of Undiscovered oil Resources in the Devonian–Mississippian Bakken Formation, Williston Basin Province, Montana, and North Dakota. U.S. Geol. Surv. Fact Sheet 2008-3021.

    Google Scholar 

  • Poth, C. W. (1962) The Occurrence of Brine in Western Pennsylvania, Pennsylvania Geological Survey Fourth Series Bulletin M 47, pp.53.

    Google Scholar 

  • Qinghai Geological Survey Institute. 2003. Resource Evaluation of Prospective Area of Oilfield Brine Resources with Enriched Potassium, Boron, Lithium and Iodine in Western Qaidam Basin, Qinghai. Qinghai Geological Survey Institute, Xining.

  • Rebary, B., Raichura, M., Mangukia, S. R. and Patidar, R. (2014) Mapping of Iodine, Lithium and Strontium in Oilfield water of Cambay Basin, Gujarat. The J. Geol. Soc. India, v.83(6), pp.669–675.

    Article  Google Scholar 

  • Rettig, S. L., Jones, B. F. and Risacher, F (1980) Geochemical evolution of brines in the salar of uyuni, Bolivia, Chem. Geol., v.30, pp.57–79.

    Article  Google Scholar 

  • Stueber, A. M. and Walter, L. M. (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim. Cosmochim. Ac., v.55. pp.309–325.

    Article  Google Scholar 

  • Thomas, I. A. (1973) Celestite. Institute of Geological Sciences. Mineral Dossier, No. 6.

    Google Scholar 

  • Weber, D., Jennings, E., Sublette, K., Roberts, K. and Tapp, B. (2005) Trace Element Compositions of Brine Impacted Soils and Produced Water in Osage County, Oklahoma. Conf2005/Abstracts/Weber_Trace.pdf

    Google Scholar 

  • Williams, A.F. (1972) Celestite occurrences in the western Great Artesian Basin, South Australia. Quarterly Geological Notes of the Geological Survey of South Australia, v.43, pp.1–4.

    Google Scholar 

  • Witherow, R. A. and Lyons, W. B. (2011) The fate of minor alkali elements in the chemical evolution of salt lakes, Saline Syst., v.7(2), pp.2–17.

    Google Scholar 

  • Witherow, R. A., Lyons, W. B. and Henderson, G. M. (2010) Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems, Chem. Geol., v.275, pp.139–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babulal Rebary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogda, A.A., Patidar, R. & Rebary, B. Geological introduction to strontium-rich sub-soil brine with emphasis on the Little Rann of Kutch and Bhavnagar, Gujarat. J Geol Soc India 89, 82–86 (2017). https://doi.org/10.1007/s12594-017-0562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0562-6

Navigation