Skip to main content
Log in

Temporal multifractal pattern of seismicity in northwest Himalayan region

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The variation of temporal fractal dimension D2 (t) value may be well applied for understanding the future large earthquakes. In this present analysis the time series of inter-occurrence of earthquakes of consecutive hundred events window in Himalayan region is analyzed. We observed the variation in D2 (t) values in the range of 0.19 to 0.68 indicating the variation of clustering of events with respect to time. The multifractal nature of earthquakes is also investigated by plotting Dq(t) versus q. The result shows the temporal distribution of earthquakes have multifractal structure of definitive pattern rather than random pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avouac, J.P. and Tapponnier, P. (1993) Kinematic model of active deformation in Central Asia.Geophys. Res. Lett., v.20, pp. 895–898.

    Article  Google Scholar 

  • Bansal, A.R. and Ogata, Y. (2013) A non-stationary epidemic type aftershock sequence model for seismicity prior to the December 26, 2004 M 9.1 Sumatra Andaman Islands mega earthquake. Jour. Geophys. Res., v.118(2), pp.616–629.

    Article  Google Scholar 

  • Bansal, A.R., Dimri, V.P. and Babu, K.K. (2013) Epidemic type aftershock sequence (ETAS) modeling of northeastern Himalayan seismicity. Jour. Seismol., v. 17(2), pp.255–264.

    Article  Google Scholar 

  • Bilham, R., Gaur,V.K. and Molnar, P. (2001) Himalayan Seismic Hazard. Science v.293, pp.1442–4.

    Article  Google Scholar 

  • Bilham, R., Blume, F., Bendick, R. and Gaur, V.K. (1998) Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes. Curr. Sci., v.74, pp.213–229.

    Google Scholar 

  • Chamoli, A. and Yadav, R.B.S. (2015) Multifractality in seismic sequences of NWHimalaya. Nat. Hazard, v.77(1), pp.S19–S32.

    Article  Google Scholar 

  • Enescu, B., Ito, K., Radulian, M., Popescu, M. and Bazacliu, O. (2005) Multifractal and chaotic analysis of Vrancea (Romania) intermediate-depth earthquakes: investigation of the temporal distribution of events. Pure Appld. Geophys.., v.162, pp.249–271.

    Article  Google Scholar 

  • Gansser, A. (1977) The great suture zone between Himalaya and Tibet: a preliminary account, Colloque International CNRS 268, Ecologie et Géologie de l’ Himalaya, Sciences de la Terre (Edition CNRS, Sèvres-Paris), pp.181–192.

    Google Scholar 

  • Golitz, C. (1998) Fractal and Chaotic Properties of Earthquakes. Springer, Berlin, 189p.

    Google Scholar 

  • Guillot, S., Maheo, G., De Sigoyer, J., Hattori, K.H., and Pecher, A. (2008) Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, v.451,pp.225–241.

    Article  Google Scholar 

  • Hanks, T.C. (1992) Small earthquakes, tectonic forces. Science, v.256, pp.1430–1432.

    Article  Google Scholar 

  • Heim, A. and Gansser, A. (1939) Central Himalaya: Geological observations of the Swiss expedition, 1936. Mem. Swiss Soc. Nat. Sci., v.73, pp.245.

    Google Scholar 

  • Hirata, T. and Imoto, M. (1991) Multifractal analysis of spatial distributions of microearthquake in the Kanto Region. Geophys. Jour. Internat., v.107, pp.155–162.

    Article  Google Scholar 

  • Kagan, Y.Y. and Jackson, D.D. (1991) Long-term earthquake clustering. Geophys. Jour. Internat., v.104, pp.117–133.

    Article  Google Scholar 

  • Khattri, K.N. and Tyagi, A.K. (1983) Seismicity patterns in the Himalayan plate boundary and identification of areas of high seismic potential. Tectonophysics, v.96, pp.281–297.

    Article  Google Scholar 

  • Kurths, J. and Herzel, H. (1987) An attractor in a solar time series. Physica, v.25D, pp.165-172.

    Google Scholar 

  • Lavé, J. and Avouac, J.P. (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Jour. Geophy. Res., v.105 (B3), pp.5735–5770.

    Article  Google Scholar 

  • Le Fort, P. (1975) Himalayas, the collided range: present knowledge of the continental arc. Amer. Jour. Sci., v.275 (A), pp.1–44.

    Article  Google Scholar 

  • Lee, H.K. (1995) Fractal clustering of fault activity in California. Geology, v.23, pp. 377–380.

    Article  Google Scholar 

  • Li, Q and Xu, G.M. (2012) Characteristic Variation of Local Scaling Property before Puer M6.4 Earthquake in China: The Presence of a New Pattern of Nonlinear Behavior of Seismicity. Phy. Solid Earth, v.48(2), pp.155–161.

    Article  Google Scholar 

  • Long, S., Mc Quarrie, N., Tobgay, T. and Grujic, D. (2011) Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol. Soc. Amer. Bull., v.123, (7/8), pp.1427–1447.

    Article  Google Scholar 

  • Marsan, D. (2005) The role of small earthquakes in redistributing crustal elastic stress. Geophy. Jour. Internat. v.163, pp.141–151.

    Article  Google Scholar 

  • Matcharashvili, T., Chelidze, T. and Javakhisvili, Z. (2000) Nonlinear analysis of magnitude and inter-event time interval sequences for earthquakes of the Caucasian region. Non-linear Proc. Geophys., v.7, pp.9–19.

    Article  Google Scholar 

  • Matcharashvili, T., Chelidze, T., Javakhisvili, Z. and Ghlonti, E. (2002) Detecting differences in temporal distribution of small earthquakes before and after large events. Comp. Geosci., v.28, pp.693–700.

    Article  Google Scholar 

  • Minster, J.B. and Jordan, T.H. (1978) Present day plate motion. Jour. Geophys. Res. v.83, pp.5331–5354.

    Article  Google Scholar 

  • Molnar, P. (1990) A review of the seismicity and the rates of active under-thrusting and deformation at the Himalaya. Jour. Him. Geol., v.1, pp.131–154.

    Google Scholar 

  • Nakata, T. (1972) Geomorphic History and Crustal Movements of the Foothill of the Himalayas. Science Reports, Tohoku University, 7th Series. Geography v.22, pp.39–177.

    Google Scholar 

  • Nakata, T. (1989) Active faults of the Himalayas of India and Nepal. Geol. Soc. Amer. Spec. Paper, v.232, pp.243–264.

    Article  Google Scholar 

  • Okubo, P.G. and Aki, K. (1987) Fractal geometry in San Andreas fault system. Jour. Geophy. Res., v.92, pp.345–355.

    Article  Google Scholar 

  • Papadopoulos, G. A. and Voidomatis, P.H. (1987) Evidence for periodic seismicity in the Inner Aegean seismic zone. Pure Appld. Geophys., v.125, pp.613–628

    Article  Google Scholar 

  • Powers, P.M., Lillie, R.J. and Yeats, R.S. (1998) Structure and shortening of the Kangra and Dehradun reentrants, sub-Himalaya, India. Geol. Soc. Amer. Bull., v.110 (8), pp.1010–1027.

    Article  Google Scholar 

  • Powell, C.M. and Conaghan, P.J. (1973) Plate tectonics and the Himalayas. Earth Planet. Sci. Lett., v.20, pp.1–12.

    Article  Google Scholar 

  • Roy, P.N.S. and Padhi, A. (2007) Multifractal analysis of earthquakes in the southeastern Iran-Bam region. Pure Appld. Geophys., v.167, pp.2271–2290.

    Article  Google Scholar 

  • Roy, P.N.S. and Mondal, S.K. (2012a) Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region. Jour. Earth System Sci., v.121(4), pp.1033–1047.

    Article  Google Scholar 

  • Roy, P.N.S. and Mondal, S.K. (2012b) Seismic Hazards Assessment of Kumaun Himalaya and adjacent region. Na. Haz. v.64, pp. 283–297

    Article  Google Scholar 

  • Smalley, R.F.J.R., Chatelan, J.-L., Turcotte, D.L. and Prevot, R. (1987) A fractal approach to the clustering of earthquakes: application to the seismicity of the New Hebrides. Bull. Seis. Soc. Amer., v.77, pp.1368–1381.

    Google Scholar 

  • Sunmonu, L.A., Dimri,V.P., Prakash, M.R. and Bansal, R. (2001) Multifractal approach to the time series of m=7.0 earthquake in Himalayan region and its vicinity during 1895-1995. Jour. Geol. Soc. India v.58, pp.163–169.

    Google Scholar 

  • Tang, Yi-Jiun, Chang, Young-Fo, Liou, Tai-Sheng, Chen, Chienchih and Wu, Yih-Min (2012) Evolution of the temporal multifractal scaling properties of the Chiayi earthquake (ML=6.4), Taiwan. Tectonophysics v.546-547, pp.1–9.

    Article  Google Scholar 

  • Telesca, L., Cuomo, V., Lanfredi, M., Lapenna,V. and Macchiato, M. (1999) Investigating clustering structures in timeoccurrence sequences of seismic events observed in the Irpinia–Basilicata Region (Southern Italy). Fractals v.7, pp. 221–234.

    Article  Google Scholar 

  • Telesca, L., Lapenna,V. and Macchiato, M. (2003a) Investigating the time-clustering properties in seismicity of Umberia-Marche region (Central Italy). Chaos Soliton Fractals, v.18(2), pp.202–217, doi:10.1016/S0960-0779(02)00654-9

    Google Scholar 

  • Telesca, L., Lapenna, V. and Macchiato, M. (2003b) “Spatial variability of the time-correlated behavior in Italian Seismicity”, Earth Plan. Sci. Lett. v. 212(3-4), pp. 279–290, doi:10.1016/S0012-821X(03)00286-3

    Google Scholar 

  • Telesca, L. and Lapenna, V. (2006) Measuring multifractality in seismic sequences. Tectonophysics v.423, pp.115–123.

    Article  Google Scholar 

  • Telesca, L., Balasco, M. and Lapenna, V. (2007) Investigating the time correlation properties in self-potential signals recorded in a seismic area of Irpinia, southern Italy. Chaos Soliton Fractals, v.32, pp.199–211.

    Article  Google Scholar 

  • Teotia, S.S. and Kumar, D. (2011) Role of multifractal analysis in understanding the preparation zone for large size earthquake in the North-Western Himalaya region. Non-linear Proc. Geophy. v.18, pp.111–118.

    Article  Google Scholar 

  • Turcotte, D.L. (1989) Fractal in geology and geophysics. Pure Appld. Geophys., v.131, pp.171–196

    Article  Google Scholar 

  • Wang, J.H. (1996) Multifractal measures of time series of Ms = 7 earthquakes in Taiwan. Jour. Geol. Soc. China, v.39, pp.117–123

    Google Scholar 

  • Wang, J.-H. and Lee, C.-W. (1997) Multifractal measures of time series of earthquakes. Jour. Phy. Earth, v.45, pp.331–345.

    Article  Google Scholar 

  • Wang, J.H and Lee, C.W. (1995) Fractal characterization of an earthquake sequence. Physica A v.221, pp.152–158

    Article  Google Scholar 

  • Wesnousky, S.G., Kumar, S., Mohindra, R. and Thakur, V.C. (1999) Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics, v.18(6), pp.967–976.

    Article  Google Scholar 

  • Yeats, R.S. and Thakur, V.C. (1998) Reassessment of Earthquake hazard based on a fault-bend fold model of the Himalayan plate-boundary fault. Curr. Sci., v.74, pp.230–233.

    Google Scholar 

  • Yin, A. and Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan orogeny.Ann. Rev. Earth Planet. Sci., v.28, pp.211–280.

    Article  Google Scholar 

  • Yin, A. (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev., v.76, pp.1–131.

    Article  Google Scholar 

  • Zamani, A. and Agh-Atabai, M. (2009) Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. Jour. Geodyn., v.47, pp.271–279.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S.K., Roy, P.N.S. Temporal multifractal pattern of seismicity in northwest Himalayan region. J Geol Soc India 88, 569–575 (2016). https://doi.org/10.1007/s12594-016-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0522-6

Keywords

Navigation