Skip to main content
Log in

Soft sediment deformation structures from Khari River section of Rudramata member, Jhuran Formation, Kutch: A testimony of Jurassic seismites

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Soft sediment deformation structures such as slump folds, clastic dyke, syn-sedimentary faults and convolute bedding are present in the coarse–fine grained yellowish buff coloured sandstone, and interbedded reddish brown fine grained sandstone and yellowish–white siltstone at the Khari River section belonging to Rudramata member of Jhuran Formation (Upper Jurassic), Kutch. These soft sediment deformation structures are confined to lower and middle parts of the section and are invariably underlain as well as overlain by undeformed beds that have restricted lateral and vertical extent and occur in close proximity of Kutch Mainland Fault, thereby suggesting that these structures were formed by seismic activity and therefore represents seismites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLEN, J.R.L. (1977) The possible mechanics of convolute lamination in graded beds. Jour. Geol., v.134, pp.19–31.

    Article  Google Scholar 

  • Alsop, G.I. and Marco, S. (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Jour. Struct. Geol., v.33, pp.433–457.

    Article  Google Scholar 

  • AMBRASEYS, N.N. (1988) Engineering seismology. Earthquake Eng. Struct. Dyn., v.17, pp.1–105.

    Article  Google Scholar 

  • ANAND, A. and JAIN, A.K. (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan-Andaman Arc, India. Tectonophysiscs, v.133, pp.105–120.

    Article  Google Scholar 

  • ATKINSON, G. (1984) Simple computation of liquefaction probability for seismic hazard application. Earthquake Spectra, v.1, pp.107–123.

    Article  Google Scholar 

  • AUDEMARD, F.A. and DE SANTIS, F. (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Assoc. Eng. Geol. Bull. Int., v.44, pp.5–16.

    Article  Google Scholar 

  • BERRA, F. and FELLETTI, F. (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sediment. Geol., v.235, pp.249–263.

    Article  Google Scholar 

  • BHATTACHARYA, H.N. and BANDYOPADHAYAY, S. (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sediment. Geol., v.119, pp.239–252.

    Article  Google Scholar 

  • BISWAS, S.K. (1977) Mesozoic Rock-Stratigraphy of Kutch, Gujarat. Quart. Jour. Geol. Min and Metall. Soc. India, v.49, pp.1–32.

    Google Scholar 

  • BISWAS, S.K. (1987) Regional tectonic framework, structure and evolution of Western margin basins of India. Tectonophysics, v.135, pp.307–327.

    Article  Google Scholar 

  • BISWAS, S.K. (1991) Stratigraphy and sedimentary evolution of the Mesozoic basin of Kutch, Western India. In: S. K. Tandon, C.C Pant. and S.M. Casshyap (Eds.), Sedimentary basins of India, Tectonic context, Gyanodaya Prakashan, Nainital, pp.74–103.

  • BISWAS, S.K. (2005) A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Curr. Sci., v.88, pp.1592–1600.

    Google Scholar 

  • BOSE, P.K., MAZUMDAR, R., and SARKAR, S. (1997) Tidal sandwaves and related storm deposits in the transgressive protoprpterozoic Chaibasa Formation, India. Precambrian Res., v.84, pp.63–81.

    Article  Google Scholar 

  • BRENCHLEY, P.J. and NEWALL, G. (1977) The significance of contorted bedding in upper Ordovician sediments of the Oslo region, Norway. Jour. Sediment. Petrol., v.44, pp.819–833.

    Google Scholar 

  • CHAKRABORTY, A. (1977) Upward flow and convolute lamination. Senckenbergiana Marit, v.9, pp.285–305.

    Google Scholar 

  • COLLINSON, J. (1994) Sedimentary deformational structures. In: A.J. Maltman, (Ed.), The Geological Deformation of Sediments. Chapman & Hall, London, pp.95–125.

    Chapter  Google Scholar 

  • COJAN, I. and THIRY, M. (1992) Seismically induced deformation structures in Oligocene shallow-marine and aeolian coastal sands (Paris Basin). Tectonophysics, v.206, pp.79–89.

    Article  Google Scholar 

  • DAVIS, G. H. (1984) Structural Geology of Rocks and Regions. John Wiley and Sons, New York, 646p.

    Google Scholar 

  • DE, A. (1964) Iron titanium oxides and silicate minerals of the alkali olivine basalts tholeiitic and acidic rocks of the Deccan trap series and their significance. Rep. 22nd Session Int. Geol. Cong., New Delhi, Part III, pp.126–138.

    Google Scholar 

  • DECHEN, S. and AIPING, S. (2012) Typical earthquake-induced softsediment deformation structures in the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing, China and interpreted earthquake frequency. Jour. Paleogeog., v.1, pp.71–89.

    Google Scholar 

  • DEMOULIN, A. (1996) Clastic dykes in East Belgium–evidence for Upper Pleistocene strong earthquakes west of the lower Rhine Rift segment. Jour. Geol., v.153, pp.803–810.

    Article  Google Scholar 

  • DURAISWAMI, R.A. (2008) Petrography and geochemistry of ultramafic xenoliths in the alkaline rocks from Kutch, Gujarat and their bearing on the mantle beneath Kutch. Unpubld. Ph.D. Thesis, University of Pune, 315p.

    Google Scholar 

  • EICHHUBL, P., HOOKER, J. and LAUBACH, S.E. (2010) Pure and shearenhanced compaction bands in Aztec Sandstone. Jour. Struct. Geol., v.32, pp.1873–1886.

    Article  Google Scholar 

  • ELLIOT, C.G. and WILLIAMS, P.F. (1988) Sediment slump structures: a review of diagnostic criteria and application to an example from Newfoundland. Jour. Struct. Geol., v.10, pp.171–182.

    Article  Google Scholar 

  • FIELD, M.E., GARDNER, J.V., JENNINGS, A.E. and EDWARDS, B.D. (1982) Earthquake-induced sediment failures on a 0.25 slope, Klamath river delta, California. Geology, v.10, pp.542–546.

    Article  Google Scholar 

  • FORTUIN, A.R. and DABRIO, C.J. (2008) Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology, v.55, pp.1595–1622.

    Article  Google Scholar 

  • FOSSEN, H. (2010) Deformation bands formed during soft sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, v.27, pp.215–222.

    Article  Google Scholar 

  • GREB, S.F., ETTENSOHN, F.R. and OBERMEIR, S.F. (2002) Developing a classification scheme for seismites. Geol. Soc. Am. Abstr. Prog., v.34, A-102.

  • HEMPTON, M.R. and DEWEY, J.F. (1983) Earthquake induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics, v.98, pp.7–14.

    Article  Google Scholar 

  • HURST, A., SCOTT, A. and VIGORITO, M. (2011) Physical characteristics of sand injectites. Earth Sci. Reviews, v.106, pp.215–246.

    Article  Google Scholar 

  • KARMALKAR, N.R., KALE, M.G., DURAISWAMI, R.A. and JONALGADDA, M. (2008) Magma underplating and storage in the crustbuilding process beneath Kutch region, NW India. Curr. Sci., v.94, pp.1582–1588.

    Google Scholar 

  • KARMALKAR, N.R., DURAISWAMI, R.A., GRIFFIN, W.L. and O’REILLY, S.Y. (1999) Enigmatic orthopyroxene-rutile-spinel intergrowth in the mantle xenoliths from Kutch, India. Curr. Sci., v.76, pp.687–692.

    Google Scholar 

  • KLEIN, G. de V. (1977) Clastic tidal facies. Champaign III: CEPCO, 149 p.

    Google Scholar 

  • KOC TASGIN C., ORHAN H., TÜRKMEN I. and AKSOY E. (2011) Softsediment deformation structures in the late Miocene Selmo Formation around Ad1yaman area, Southeastern Turkey. Sediment. Geol., v.235, pp.277–291.

    Article  Google Scholar 

  • KSHIRSAGAR, P.V., SHETH, H.C. AND SHAIKH, B. (2011) Mafic alkalic magmatism in central Kachchh, India: a monogenetic volcanic field in the northwestern Deccan Traps. Bull. Volcano., v.73, pp.595–612.

    Article  Google Scholar 

  • KUNDU, A., GOSWAMI, B., ERIKSSON, P.G. and CHAKRABORTY, A. (2011) Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India. Jour. Earth System Sci., v.120, pp.167–181.

    Article  Google Scholar 

  • LEVI, T., WEINBERGER, R., AIFA, T., EYAL, Y. and MARCO, S. (2006) Earthquake induced clastic dykes detected by anisotropy of magnetic susceptibility. Geology, v.34, pp.69–72.

    Article  Google Scholar 

  • LEVI, T., WEINBERGER, R., EYAL, Y., LYAKHOVSKY, V. and HEIFETZ, E. (2008) Velocities and driving pressures of clay-rich sediments injected into clastic dykes during earthquakes. Geophys. Jour. Internat., v.175, pp.1095–1107.

    Article  Google Scholar 

  • LEE, H.I., PAIK, I.S., KANG, H.C. and CHUN, J.W. (2014) Occurrence and origins of soft sediment deformation structures in the late Pleistocene marine terrace deposits of the southeastern coast of Korea. Geosciences Jour., DOI 10.1007/s12303-013-0070-7.

    Google Scholar 

  • LOWE D.R. (1975) Water escape structures in coarse-grained sediments. Sedimentology, v.22 pp.157–204.

    Article  Google Scholar 

  • MALGORAZATA, P.J. and PIOTR, W. (2013) Soft sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology, v.60, pp.637–665.

    Article  Google Scholar 

  • MALTMAN A. (1984) On the term soft-sediment deformation. Jour. Struct. Geol., v.6, pp.589–592.

    Article  Google Scholar 

  • MALTMAN A. (1994a) The Geological Deformation of Sediments. Chapman & Hall, London, 362p.

    Book  Google Scholar 

  • MALTMAN, A. (1994b) Introduction and overview. In: A. Maltman, (Ed.), The Geological Deformation of Sediments. Chapman & Hall, London, pp.1–35.

  • MANDAL, P, RASTOGI, B.K., SATYANARAYA, H. V. S., KOUSALYA, M., VIJAYRAGHAVAN R., SATYAMURTY, C., RAJU, I.P. SARMA, A.N.S., KUMAR, N. (2004) Characterization of the fault system for Bhuj earthquake of Mw 7.7. Tectonophysics, v.378, pp.105–121.

    Article  Google Scholar 

  • MAZUMDER, R., VAN LOON, A. J. and ARIMA, M. (2006) Soft sediment deformation structures in Earth’s oldest seismites. Sediment. Geol., v.186, pp.19–29.

    Article  Google Scholar 

  • MARCO, S. and AGNON, A. (1995) Prehistoric earthquake deformations near Masada, Dead Sea Graben. Geology, v.23, pp.695–698.

    Article  Google Scholar 

  • MARTÍN-CHIVELET, J., PALMA, R.M., LÓPEZ-GÓMEZ, J. and KIETZMANN, D.A. (2011) Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina). Sediment. Geol., v.235, pp.210–221.

    Article  Google Scholar 

  • MAZUMDER, R., RODRIGUEZ-LOPEZ, J.P., ARIMA, M. and VAN LOON, A.J. (2009) Palaeoproterozoic seismites (fine-grained facies of the Chaibasa Fm., E India) and their soft-sediment deformation structures. In: S. Reddy, R. Mazumder, D. Evans and A. Collins (Eds), Palaeoproterozoic supercontinents and global evolution, Geol. Soc. Spec. Publ., v.323, pp.301–318.

    Article  Google Scholar 

  • McCALPIN, J.P. (1996) Paleoseismology. Academic Press, San Diego, 588p.

    Google Scholar 

  • McLAUGHLIN, P.I. and BRETT, C.E (2004) Eustatic and tectonic control on the distribution of marine seismites: examples from the Upper Ordovician of Kentucky, USA. Sediment. Geol., v.168, pp.165–192.

    Article  Google Scholar 

  • MIDDLETON, G.V. and HAMPTON, M.A. (1973) Sediment gravity flows: Mechanics of flow and deposition. Society of Economic Paleontologists and Mineralogists, Tulsa Oklahoma, Short Course Notes, p.38.

    Google Scholar 

  • MILLS, P.C. (1983) Genesis and diagnostic value of soft-sediment deformation structures–A review. Sediment. Geol., v.35, pp.83–104.

    Article  Google Scholar 

  • MOLLEMA, P.N. and ANTONELLNI, M.A. (1996) Compaction bands: a structural analog for anti-mode I cracks in Aeolian sandstone. Tectonophysics, v.267, pp.209–228.

    Article  Google Scholar 

  • MONECKE, K., ANSELMETTI, F.S., BECKER, A., STURM, M. and GIARDINI, D. (2004) The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics, v.394, pp.21–40.

    Article  Google Scholar 

  • MONTENAT, C., BARRIER, P. OTT D’ESTEVOU, P. and HIBSCH, C. (2007) Seismites: An attempt at critical analysis and classification. Sediment. Geol., v.196, pp.5–30.

    Article  Google Scholar 

  • MORETTI, M. and SABATO, L. (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant ′Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sediment. Geol., v.196, pp.31–45.

    Article  Google Scholar 

  • MIYATA, T. (1990) Slump strain indicative of paleoslope in Cretaceous Izumi sedimentary basin along Median tectonic line, southwest Japan. Geology, v.18, pp.392–394.

    Article  Google Scholar 

  • NICHOLS, G. (2009) Sedimentology and Stratigraphy. Wiley India Pvt. Ltd. New Delhi, 419p.

    Google Scholar 

  • OBERMEIER, S.F., MARTIN, J.R., FRANKET, A.D., YOUD, T.L., MUNSON, P.J., MUNSON, C.A. and POND, E.C. (1993) Liquefaction evidence for or strong Holocene earthquakes in the Wabash Valley of Southern Indiana and Illinois, with a preliminary estimate of magnitude. U.S. Geol. Surv.Prof. Paper-1536, 27 p.

    Google Scholar 

  • OBERMIER, S.F. (1996) Use of liquefaction-induced features for paleoseismic analysis-an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Engg. Geol., v.44, pp.1–76.

    Article  Google Scholar 

  • OWEN, G. (1987) Deformation processes in unconsolidated sands. In: M.E. Jones, R.M.F. Preston (Eds.), Deformation of sediments and Sedimentary Rocks, Geol. Soc. Spec. Publ., v.29, pp.11–24.

    Article  Google Scholar 

  • OWEN, G. (1995) Soft sediment deformation in Upper Proterozoic Torridonian Sandstones (Applecross Formation) at Torridon, Northwest Scotland; Jour. Sedim. Res., v.A65, pp.495–504.

    Google Scholar 

  • OWEN, G. (1996) Experimental soft-sediment deformation: Structures formed by liquefaction of unconsolidated sands and some ancient examples. Sedimentology, v.43, pp.279–293.

    Article  Google Scholar 

  • OWEN, G., MORETTI, M. and ALFARO, P. (2011) Recognising triggers for soft sediment deformation: Current understanding and future directions. Sediment. Geol., v.235, pp.133–140.

    Article  Google Scholar 

  • PATIDAR, A.K., MAURYA, D.M., THAKKAR, M.G., CHAMYAL, L.S. (2007) Fluvial geomorphology and neotectonic activity based on field and GPR data, Katrol hill range, Kachchh, western India. Quat. Int., v.159, pp.74–92.

    Article  Google Scholar 

  • PATIL PILLAI, S. and KALE, V.S. (2011) Seismites in the Lokapur Subgroup of the Proterozoic Kaladgi Basin, South India: A testimony to syn-sedimentary tectonism. Sediment. Geol., v.240, pp.1–13.

    Article  Google Scholar 

  • PARANJAPE, A.R., KALE, A.S. and KULKARNI, K.G.(2014) Significance of clastic injectities in the syn-rift Terani Clay Member, Sivaganga Formation, Cauvery basin, Tamil nadu, India. Curr. Sci., v.106, pp.1641–1643.

    Google Scholar 

  • PATWARDHAN, K.R. and SOMAN, A.C. (2004) An unusual Specimen form of Ichnogenus Ancorichnus from the Rudramata Member of Jhuran Formation (Upper Jurassic), Kutch. Gond. Geol. Magz., v.19, pp.77–83.

    Google Scholar 

  • PERUCCA, L. P., GODOY, E. and PANTANO, A. (2014) Late Pleistocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina. Geologos, v.20, pp.147–156.

    Article  Google Scholar 

  • RAJENDRAN, K., RAJENDRAN, C.P., THAKKAR, M., and TUTTLE, M. (2001) The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Curr. Sci., v.80, pp.1397–1405.

    Google Scholar 

  • READING, H.G. (1981) Sedimentary Environments and Facies. Blackwell, Scientific Publications, Oxford, London, 569p.

    Google Scholar 

  • REINECK, H.E. and SINGH, I.B. (1980) Depositional sedimentary environments. Berlin-Heideberg-NewYork: Springer-Verlag, 439p.

    Book  Google Scholar 

  • RINGROSE, P.S. (1989) Paleoseismicity (?) liquefaction event in late Quaternary sediment at Glenroy, Scotland. Terra Nova, v.1, pp.57–62.

    Article  Google Scholar 

  • RICCI LUCCHI, F. (1995) Sedimentographica. A photographic atlas of sedimentary structures. 2nd edn., Columbia University Press, New York, 255p.

    Google Scholar 

  • RODRIGUEZ-PASCUA, M. A., CALVO, J.P., De VICENTE, G. and GOMEZGRAS, D. (2000) Soft sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain and their potential use as indicators of earthquake magnitude during the Late Miocene. Sediment. Geol., v.135, pp.117–135.

    Article  Google Scholar 

  • ROSSETTI, D.F. and GOES, A.M. (2000) Deciphering the sedimentological imprint of paleoseismic events: An example from the Aptian Cod´o Formation, northern Brazil. Sediment. Geol., v.135, pp.137–156.

    Article  Google Scholar 

  • ROSSETTI, D.F. (1999) Soft sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: Evidence for palaeoseismicity. Sedimentology, v.46, pp.1065–1081.

    Article  Google Scholar 

  • ROWE, C. (2013) Shaking Loose: Sand volcanoes and Jurassic earthquakes. Geology, v.41, pp.1135–1136.

    Article  Google Scholar 

  • SAMAILA, N.K., ARBUBAKA, M.B., DIKE, E.F.C. and OBAJE, N.G. (2006) Description of soft sediment deformation structures in the Cretaceous Bima Sandstone from the Yola Arm, Upper BenueTrough, Northeastern Nigeria. Jour.Afr. Earth Sci., v.44, pp.66–74.

    Article  Google Scholar 

  • SASTRY, R.S., NAGARAJAN, N. and SARMA, S.V.S. (2008) Electrical imaging of deep crustal features of Kutch, India. Geophys. Jour. Internat., v.172, pp.934–944.

    Article  Google Scholar 

  • SHANKAR, R. (2001) Seismotectonics of Kutch rift basin and its bearing on the Himalayan Seismicity. ISET Jour. Earthquake Tech., v.38, pp.59–65.

    Google Scholar 

  • SCHNEIDERHAN, E.A. (2008) Neoarchaean clastic rocks on the Kaapvaal Craton provenance analyses and geotectonic implications, Ph.D. Thesis, University of Johannesburg, http://hdLhrtndle,net/10210/853.

    Google Scholar 

  • SCHNELLMANN, M., ANSELMETTI, F.S., GIARDINI, D., McKENZIE, J. A. and WARD, S. N. (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, v.30, pp.1131–1134.

    Article  Google Scholar 

  • SETH, A., SARKAR, S. and BOSE, P.K. (1990) Syn-sedimentary seismic activity in an immature passive margin basin (Lower Member of the Katrol Formation, Upper Jurassic, Kutch, India). Sediment. Geol., v.68, pp.279–291.

    Article  Google Scholar 

  • SEILACHER, A. (1969) Fault-graded beds interpreted as seismites. Sedimentology, v.13, pp.155–159.

    Article  Google Scholar 

  • SEILACHER, A. (1984) Sedimentary structures tentatively attributed to seismic events. Mar. Geol., v.55, pp.1–12.

    Article  Google Scholar 

  • SIMS, J.D. (1973) Earthquake induced structures in sediments of Van Norman lake, San Fernando, California. Science, v.182, pp.161–163.

    Article  Google Scholar 

  • SIMS, J.D. (1975) Determining earthquake recurrence interval from deformational structures in young lacustrine sediments. Tectonophysics, v.29, pp.144–152.

    Article  Google Scholar 

  • SINGH, ADAL, BHARADWAJ, B.D. and PRASAD, S. (1993) Discovery of post depositional, metadepositional and syndepositional convolute laminations in a recent point bar deposit of river Yamuna. Curr. Sci., v.65, pp.775–776.

    Google Scholar 

  • SHIKI, T., KUMON, F., INOUCHI, Y., KONTANI, Y., SAKAMOTO, T., TATEISHI, M., MATSUBARA, H. and FUKUYAMA, K. (2000) Sedimentary features of the seismo-turbidites, Lake Biwa, Japan. Sediment. Geol., v.135, pp.37–50.

    Article  Google Scholar 

  • SIEGENTHALER C., FINGER W., KELTS K. and WANG S. (1987) Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclogae Geologicae Helvetica, v.80, pp.241–260.

    Google Scholar 

  • SINGH, S. and JAIN, A.K. (2007) Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone. Sediment. Geol., v.196, pp.47–57.

    Article  Google Scholar 

  • SOMAN, G.R. and KALE, M.G. (1993) Sedimentological studies of Talchirs from Ghonad area, Pranhita-Godavari basin. Gond. Geol. Mag., Spl. Vol. Birbal Sahani Cente. Symp. Gondwana India, pp.100–121.

    Google Scholar 

  • SUKHIJA, B.S., RAO, M.N., REDDY, D.V., NAGABHUSHANAM P., HUSSAIN, S., CHADHA, R.K. and GUPTA, H.K. (1999) Timing and return period of major palaeoseismic events in the Shillong Plateau, India. Tectonophysics, v.308, pp.53–65.

    Article  Google Scholar 

  • TASGIN, C.K. and TURKMEN, I. (2009) Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Caybagi Formation, Eastern Turkey. Sediment. Geol., v.218, pp.16–30.

    Article  Google Scholar 

  • TOPAL, S. and OZKUL, M. (2014) Soft-sediment deformation structures interpreted as Seismites in the Kolankaya Formation, Denizli basin (SW Turkey). The Sci. World Jour., v.2014, pp.1–13.

    Article  Google Scholar 

  • TUCKER, M. E. (2011) Sedimentary rocks in Field: A Practical guide. John Wiley and Sons, UK, 288p.

    Google Scholar 

  • UPADHYAY, R. (2001) Seismically-induced soft-sediment deformational structures around Khalsar in the Shyok Valley, northern Ladakh and eastern Karakoram, India. Curr. Sci., v.81, pp.600–604.

    Google Scholar 

  • VANNESTE, K., MEGHRAOUI, M. and CAMELBEECK, T. (1999) Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the feldbiss Fault, Lower Rhine Graben System. Tectonophysics, v.3089, pp.57–79.

    Article  Google Scholar 

  • VAN LOON, A.J. (2009) Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos, v.15, pp.3–55.

    Google Scholar 

  • VITTORI, E., LABENI S.S. and SERVA, A. (1991) Paleoseismology: review of the state-of-the-art. Tectonophysics, v.193, pp.9–32.

    Article  Google Scholar 

  • WHEELER, R.L. (2002) Distinguishing seismic from nonseismic soft-sediment structures: Criteria from Seismic-hazard analysis. In: F. R Ettensohn, N. Rast and C.E. Brett (Eds.), Ancient Seismites, GSA Special Paper, v.359, pp.1–11

    Article  Google Scholar 

  • WOODCOCK, N.H. (1976a) Ludlow Series slumps and turbidites and the form of the Montgomery Trough, Powys, Wales. Proc. of the Geologists Association, v.87, pp.169–182.

    Article  Google Scholar 

  • WOODCOCK, N. H. (1976b) Structural style in slump sheets: Ludlow Series, Powys, Wales. Jour. Geol. Soc. London, v.132, pp.399–415.

    Article  Google Scholar 

  • WOODCOCK, N. H. (1979) The use of slump structures as paleoslope orientation estimators. Sedimentology, v.26, pp.83–99.

    Article  Google Scholar 

  • YONG, L., ZHUFU, S., CUI, M., YUPING, Y. and SHENGXIN, L. (2013) The seismic induced Soft sediment deformation structures in Middle Jurassic of Western Qaidamu Basin. Acta Geologica Sinica, v.87, pp.979–988 (English edition).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, M.G., Pundalik, A.S., Duraiswami, R.A. et al. Soft sediment deformation structures from Khari River section of Rudramata member, Jhuran Formation, Kutch: A testimony of Jurassic seismites. J Geol Soc India 87, 194–204 (2016). https://doi.org/10.1007/s12594-016-0387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0387-8

Keywords

Navigation