Advertisement

Journal of the Geological Society of India

, Volume 87, Issue 2, pp 179–193 | Cite as

Long-term trend analysis of water table using ‘MAKESENS’ model and sustainability of groundwater resources in drought prone Barind area, NW Bangladesh

  • ATM Sakiur Rahman
  • Md. Kamruzzama
  • Chowdhury Sarwar JahanEmail author
  • Quamrul Hasan Mazumder
Research Articles

Abstract

In Bangladesh, agriculture plays a major role in the national economy. In the drought prone Barind area in NW Bangladesh, cropping intensity has increased almost double since late eighties of last century (from 1985) because of the introduction of groundwater irrigation. Long-term behavior of groundwater table (GWT) in the drought prone Barind area has been studied using MAKESENS model in the wake of massive installation of tube-wells. The study reveals that the maximum and minimum depths to GWT during 1991-2010 show on average declining trend of 4.51 m and 4.73 m. The long-term prediction for the period of 2020-50 assuming the current rate of groundwater withdrawal is that the declining trend will be 1.16 to 1.59 and 1.07 to 1.82 times more for maximum and minimum groundwater depths respectively in comparison to the present. The rigorous exploitation of groundwater for irrigation, decreasing rainfall and surface geological attributes lead towards declining trend of GWT. This will hamper the country’s food security and ultimately threaten its socio-economic sustainability. So the appropriate strategies for the management of groundwater resource on a sustainable basis should be the priority for maintaining agricultural productivity.

Keywords

Groundwater level MAKESENS model Resource Sustainability Bangladesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALI, M.H., ABUSTAN, I., RAHMAN, M.A. and HAQUE, A.A.M. (2012) Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resources Management, v.26, pp.623–641. doi: 10.1007/s11269-011-9936-5 CrossRefGoogle Scholar
  2. ASADUZZAMAN, M. and RUSHTON, K.R. (2006) Improved yield from aquifers of limited saturated thickness using inverted wells. Jour. Hydrol., v.326, pp.311–324.CrossRefGoogle Scholar
  3. AZIZ, O.I.A. and BURN, D.H. (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. Jour. Hydrol., v.319, pp.282–294.CrossRefGoogle Scholar
  4. BADC (BANGLADESH AGRICULTURAL DEVELOPMENT CORPORATION) 2005. The minor irrigation survey report of 2005. Dhaka, BangladeshGoogle Scholar
  5. BADC (BANGLADESH AGRICULTURAL DEVELOPMENT CORPORATION) 2008. Minor irrigation survey report 2007-2008. Survey and Monitoring Project, BADC, Ministry of Agriculture of Bangladesh, DhakaGoogle Scholar
  6. BARI, M.F. and ANWAR, A.H.M.F. (2000) Effects on irrigated agriculture on groundwater quality in northwestern Bangladesh. In: Proceedings of Integrated Water Resources Management for Sustainable Development, New Delhi, pp.119–121.Google Scholar
  7. BBS (BANGLADESH BUREAU OF STATISTICS) (2009) Annual agricultural statistics 2008. Agricultural Wing, Bangladesh Bureau of Statistics, Dhaka.Google Scholar
  8. CHAPPELL, A., HERITAGE, G.L., FULLER, I.C., LARGE, A.R.G. and MILAN, D.J. (2003) Geostatistical analysis of ground-survey elevation data to elucidate spatial and temporal river channel change. Earth Surf. Proc. Land., v.28, pp.349–370.CrossRefGoogle Scholar
  9. CHOI, H.M. AND LEE, J.Y. (2009) Parametric and non-parametric trend analyses for water levels of groundwater monitoring wells in Jeju Island. Jour. Soil Groundwater Environ., v.14, pp.41–50 (in Korean).Google Scholar
  10. FISCHER, M.M., SCHOLTEN, H.J. and UNWIN, D.J. (1996) Spatial analytical perspectives on GIS. Taylor & Francis Ltd, London, 126p.Google Scholar
  11. HIRSCH, R.M., SLACK, J.R. and SMITH, R.A. (1982) Techniques of trend analysis for monthly water quality data. Water Resour. Res., v.18, pp.107–121.CrossRefGoogle Scholar
  12. HOQUE, M. (1982) Tectonic set-up of Bangladesh and its relation to hydrocarbon accumulation. Phase I: USAID, Center for Policy Research, Dhaka. 177p.Google Scholar
  13. HUTH, R. and POKORNA, L. (2004) Parametric versus non-parametric estimation of climatic trends. Theoretical and Applied Climatology, v.77, pp.107–112CrossRefGoogle Scholar
  14. IRRI (International Rice Research Institute) (2010) World Rice Statistics (WRS), Manila, Philippines.Google Scholar
  15. ISLAM, M.M. and KANUMGOE, P. (2005) Natural recharge to sustainable yield from the Barind aquifer: a tool in preparing effective management plan of groundwater resources. Water Sci. Technol., v.52, pp.251–258.Google Scholar
  16. JAHAN, C.S., MAZUMDER, Q.H., GHOSE, S.K. and ASADUZZAMAN, M. (1994) Specific yield evaluation: Barind area, Bangladesh. Jour. Geol. Soc. India, v.44, pp.283–290.Google Scholar
  17. JAHAN, C.S. and AHMED, M. (1997) Flow of groundwater in the Barind area, Bangladesh: implication of structural framework. Jour. Geol. Soc. India, v.50, pp.743–752.Google Scholar
  18. JAHAN, C.S., ISLAM, M.A., MAZUMDER, Q.H., ASADUZZAMAN, M., ISLAM, M.M., ISLAM, M.O. AND SULTANA, A. (2007) Evaluation of Depositional Environment and Aquifer Condition in the Barind Area, Bangladesh, using Gamma Ray Well Log Data. Jour. Geol. Soc. India, v.70, pp.1070–1076.Google Scholar
  19. JAHAN, C.S., MAZUMDER, Q.H., ISLAM, A.T.M.M. and ADHAM, M.I. (2010) Impact of Irrigation in Barind Area, NWBangladesh–An Evaluation Based on the Meteorological Parameters and Fluctuation Trend in Groundwater Table. Jour. Geol. Soc. India, v.76, pp.134–142.CrossRefGoogle Scholar
  20. KENDALL, M.G. (1975) Rank Correlation Methods, 4th Ed., Charles Griffin, London, UKGoogle Scholar
  21. LEE, J.Y., YI, M.J., LEE, J.M., AHN, K.H., WON, J.H., MOON, S.H. and CHO, M. (2006) Parametric and non-parametric trend analysis of groundwater data obtained from national groundwater monitoring stations. Jour. KoSSGE, v.11, pp.56–67 (in Korean).Google Scholar
  22. MANN, H.B. (1945) Nonparametric tests against trend. Econometrica, v.13, pp.245–259.CrossRefGoogle Scholar
  23. MORGAN, J.P. and MCINTIRE, W.G. (1959) Quaternary geology of the Bengal Basin. Geol. Soc. Amer. Bull., v.70(3), pp.319–341.CrossRefGoogle Scholar
  24. MPO (MASTER PLAN ORGANIZATION) (1987) Groundwater Resources of Bangladesh. Technical Report 5. Master Plan Organization, Dhaka. Hazra, USA; Sir M MacDonald, UK; Meta, USA; EPC, Bangladesh.Google Scholar
  25. PARK, Y.C., JO, Y.J. and LEE J.Y. (2011) Trends of groundwater data from the Korean National Groundwater Monitoring Stations: indication of any change? Geosciences Jour., v.15(1), pp.105–114. DOI  10.1007/s12303-011-0006-z CrossRefGoogle Scholar
  26. PARTAL, T. and KAHYA, E. (2006) Trend analysis in Turkish precipitation data. Hydrol. Process., v.20, pp.2011–2026.CrossRefGoogle Scholar
  27. RAVENSCROFT, P., BRAMMER, H. and RICHARDS, K.S. (2009) Arsenic Pollution:A Global Synthesis. Wiley-Blackwell, Cichester, UKCrossRefGoogle Scholar
  28. RAVENSCROFT, P., BURGESS, W.G., AHMED, K.M., BURREN, M. and PERRIN, J. (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeol. Jour., v.13, pp.727–751.CrossRefGoogle Scholar
  29. SALMI, T., MAATTA, A., ANTTILA, P., AIROLA, T.R. and AMNELL, T. (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendal test and Sen’s slope estimates — the Excel template application MAKESENS. User manual, Publication on air quality, Finish Meteorological Institute, p.35.Google Scholar
  30. SARKAR, A.A. and ALI, M.H. (2009) Water-table dynamics of Dhaka city and its long-term trend analysis using the “MAKESENS” model. Water Int. v.34(3), pp.373–382.CrossRefGoogle Scholar
  31. SCOTT, C.A. and SHARMA, B. (2009) Energy supply and the expansion of groundwater irrigation in the Indus-Ganges Basin. Internat. Jour. River Basin Managmt., v.7, pp.1–6.Google Scholar
  32. SEN, P.K. (1968) Estimates of the regression coefficient based on Kendall’s tau. Jour. Amer. Stat. Assoc., v.63(324), pp.1379–1389.CrossRefGoogle Scholar
  33. SHAMSUDDUHA, M., CHANDLER, R.E., TAYLOR, R.G. and AHMED, K.M. (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol. Earth Syst. Sci., v.13, pp.2373–2385.CrossRefGoogle Scholar
  34. SHAMSUDDUHA, M., TAYLOR, R.G. and AHMED, K.M. and ZAHID, A. (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeology Jour., v.19, pp.901–916. doi: 10.1007/s10040-011-0723-4 CrossRefGoogle Scholar
  35. THAS, O., VAN VOOREN, L. and OTTOY, J.P. (2007) Selection of nonparametric methods for monotonic trend detection in water quality. Jour. Amer. Water Res. Assoc., v.34, pp.347–357.CrossRefGoogle Scholar
  36. UNDP (1982) Groundwater Survey: the Hydrogeological Conditions of Bangladesh, United Nations Development Programme (UNDP), Technical Report DP/UN/BGD-74-009/1, New York, pp.113.Google Scholar
  37. UYAN, M. and CAY, T. (2013) Spatial analyses of groundwater level differences using geo-statistical modeling. Environ Ecol Stat. v.20, pp.633–646, doi: 10.1007/s10651-013-0238-3 CrossRefGoogle Scholar
  38. WARPO (2000) National Water Management Plan Project, Draft Development Strategy, Main final, Vol. 2, Water Resources Planning Organization (WARPO), Dhaka.Google Scholar
  39. WARPO (2001) Draft Development Strategy, National Water Management Plan, Water Resources Planning Organization (WARPO).Google Scholar

Copyright information

© Geological Society of India 2016

Authors and Affiliations

  • ATM Sakiur Rahman
    • 1
  • Md. Kamruzzama
    • 2
  • Chowdhury Sarwar Jahan
    • 3
    Email author
  • Quamrul Hasan Mazumder
    • 3
  1. 1.Institute of Environmental ScienceUniversity of RajshahiRajshahiBangladesh
  2. 2.Institute of Bangladesh StudiesUniversity of RajshahiRajshahiBangladesh
  3. 3.Department of Geology & MiningUniversity of RajshahiRajshahiBangladesh

Personalised recommendations