Advertisement

Journal of the Geological Society of India

, Volume 87, Issue 1, pp 5–34 | Cite as

Maastrichtian to Eocene subsurface stratigraphy of the Cauvery basin and correlation with Madagascar

Research Articles

Abstract

Late Maastrichtian through middle Eocene planktic foraminiferal biostratigraphy and erosion patterns from three Cauvery basin wells are compared with the Krishna-Godavari basin, Madagascar and South Atlantic Site 525A. Maastrichtian sedimentation appears continuous at DSDP site 525A and substantially complete in the Cauvery basin and Madagascar for the interval from ~70.3 to 66.8 Ma (zones CF6-CF3). But the latest Maastrichtian through early Paleocene record is fragmented, except for some Krishna-Godavari and Cauvery basin wells protected from erosion by Deccan traps or graben deposition, respectively. Hiatuses are observed correlative with sea level falls at 66.8, 66.25, 66.10, 65.7, 63.8 and 61.2 Ma with erosion amplified by local tectonic activity including doming and uplift due to Deccan volcanism.

Throughout this region the Cretaceous-Paleogene transition (magnetochron C29r-C29n, 66.25-65.50 Ma) is preserved only in deep wells of the Krishna-Godavari basin where Deccan Traps protected intertrappean sediments from erosion. The late Paleocene to middle Eocene marine record was recovered from two Cauvery basin wells with hiatuses correlative with low sea levels at ~49.0-56.5 Ma (zones P4c-E6) and ~53.0-55.3 Ma (zones E1-E4) at the ridge well KALI-H. A nearly complete record was recovered from well AGA, including the PETM event (zones E1-E2), which marks this an excellent reference section for India.

Similarity in erosion and sedimentation patterns of the late Maastrichtian to middle Paleocene from India to Madagascar and South Atlantic is mainly attributed to climate changes and sea level falls, regional tectonic activity from the Bay of Bengal to Madagascar, and uplift and doming in the Cauvery and K-G basins as a result of Deccan volcanism. Directly correlative with Deccan volcanism are high stress environments for marine calcifiers, as observed by species dwarfing, reduced diversity and blooms of the disaster opportunist Guembelitria cretacea in magnetochron C30n (zones CF4-CF3) correlative with Deccan phase-1 and Ninetyeast Ridge volcanism, in C29r (zones CF2-CF1) correlative with Deccan phase-2 and in C29n (zone P1b) correlative with Deccan phase-3 marking volcanism as the most important stress factor in the end-Cretaceous mass extinction and delayed evolution of planktic foraminifera.

Keywords

Maastrichtian-Eocene biostratigraphy Deccan volcanism Ninetyeast Ridge volcanism Climate Sea level changes Hiatuses High-stress environments Cauvery Basin India Madagascar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, S. and Keller, G. (2003) Planktic foraminiferal response to the latest Maastrichtian abrupt warm event: a case study from mid-latitude Atlantic Site 525A. Marine Micropaleont., v.48(3–4), pp.225–249.CrossRefGoogle Scholar
  2. Abramovich, S., Almogi-Labin, A. and Benjamini, Ch. (1998) Decline of the Maastrichtian pelagic ecosystem based on planktic foraminifera assemblage changes: implication for the terminal Cretaceous faunal crisis. Geology, v.26, pp.63–66.CrossRefGoogle Scholar
  3. Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stueben, D., Berner, Z., Ramanivosoa, B. and Randriamanantenasoa, A. (2002) Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: A multidisciplinary approach. Marine Micropaleont., v.47, pp.17–70.CrossRefGoogle Scholar
  4. Abramovich, S., Yovel-Corem, S., Almogi-Labin, A. and Benjamini, C. (2010) Global climate change and planktic foraminiferal response in the Maastrichtian: Paleoceanography, v.25, PA2201, doi:10.1029/2009PA001843.Google Scholar
  5. Abramovich, S., Keller, G., Berner, Z., Cymbalista, M. and Rak, C. (2011) Maastrichtian planktic foraminiferal biostratigraphy and paleoenvironment of Brazos River, Falls County, Texas. In: G. Keller and T. Adatte (Eds.), The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas: Society for Sedimentary Geology (Sepm) Spec. Publ., no.100, pp.123–156.Google Scholar
  6. Adatte, T., Keller, G. and Stinnesbeck, W. (2002) Late Cretaceous to Early Paleocene climate and sea-level fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.178, pp.165–196.CrossRefGoogle Scholar
  7. Adatte, T., Keller, G. and Baum, G. (2011) Lithostratigraphy, sedimentology, sequence stratigraphy and the origin of the sandstone complex in the Brazos River KT sequences. In: G. Keller and T. Adatte (Eds.), The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas: Society for Sedimentary Geology (Sepm) Spec.Publ., v.100, pp.43–80.Google Scholar
  8. Alegret, L., Ortiz, S. and Molina, E. (2009) Extinction and recovery of benthic foraminifera across the Paleocene–Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeo., Palaeoclimat., Palaeoeco., v.279, pp.186–200.CrossRefGoogle Scholar
  9. Aubry, M.-P., Ouda, K., Dupuis, C., Berggren, W.A., Van Couvering, J.A. and Members Of The Working Group On The Paleocene/Eocene Boundary (2007) The Global Standard Stratotype-section and Point (Gssp) for the base of the Eocene Series in the Dababiya section (Egypt): Episodes, v.30(4), pp.271–286.Google Scholar
  10. Bains, S., Norris, R.D., Corfield, R.M. and Faul, K.L. (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, v.407, pp.171–174CrossRefGoogle Scholar
  11. Baksi, A.K. (2005) Comment on “40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relations to the Deccan Traps” by Knight et al. [Earth Planet Sci. Lett., v.208(2003) pp.85-99]. Earth Planet. Sci. Lett. 239, pp.368–373.CrossRefGoogle Scholar
  12. Berggren, W.A., Kent, D.V., Swisher, C.C. and Aubry, M.-P. (1995) A revised Cenozoic geochronology and chronostratigraphy, In: W.A. Berggren, D.V. Kent, M.-P., Aubry and J. Hardenbol (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation, Sepm, Special Publication, no.54, pp.129–212.CrossRefGoogle Scholar
  13. Burnett, J.A. (1998) Upper Cretaceous. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Chapman and Hall, Cambridge, pp.132–199.CrossRefGoogle Scholar
  14. Chenet, A.-L., Quidelleur, X., Fluteau, F. and Courtillot, V. (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of Ktb age and short duration. Earth Planet. Sci. Lett., v.263, pp.1–15.CrossRefGoogle Scholar
  15. Chenet, A.-L., Fluteau, F., Courtillot, V., Gerard, M. and Subbarao, K.V. (2008) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar. Jour. Geophys. Res., v.113, B04101.CrossRefGoogle Scholar
  16. Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S.F.R., Subbarao, K.V. and Thordarson, T. (2009) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section: Jour. Geophys. Res., v.114, B06103, doi:10.1029/2008JB005644.Google Scholar
  17. Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J. and Cappetta, H. (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth, Planet. Sci. Lett. v.80, pp.361–374.Google Scholar
  18. Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M.G. and Besse, J. (1988) The Deccan flood basalts and the Cretaceous-Tertiary boundary. Nature, v.333, pp.843–846.CrossRefGoogle Scholar
  19. Das, A.K., Piper, J.D.A., Bandyopadhyay, G. and Basu Mallik, S. (1996) Polarity inversion in the Rajmahal lavas, northeast India: trap emplacement near commencement of the Cretaceous Normal Superchron. Geophys. Jour. Internat., v.124, pp.427–432.Google Scholar
  20. Deconto, R.M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pol-Lard, D. and Beerling, D.J. (2010) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, v.484, pp.87–91, doi:10.1038/ nature10929.CrossRefGoogle Scholar
  21. Dickens, G.R., O’Neil, J.R., Rea, D.K. and Owen, R.M. (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, v.10, pp.965–971.CrossRefGoogle Scholar
  22. Dupuis, C., Aubry, M.-P., Steurbaut, E., Berggren, W.A., Ouda, K., Magioncalda, R., Cramer, B.S., Kent, D.V., Speijer, R.P. and Heilmann-Clausen, C. (2003) The Dababiya Quarry section: lithostratigraphy, clay mineralogy, geochemistry and paleontology. In: K. Ouda and M.-P. Aubry (Eds.), The Upper Paleocene–Lower Eocene of the Upper Nile Valley: Part 1. Stratigraphy: Micropaleontology, v.49, pp.41–59.Google Scholar
  23. Font, E., Fabre, F., NÉDÉLec, A., Adatte, T., Keller, G., Veigapires, C., Ponte, J., Mirão, J., Khozyem, H. and Spangenberg, J.E. (2014) Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence. Geol. Soc. Amer. Spec. Papers, 505, p. Spe505-18, 2014, doi:10.1130/2014.2505(18).Google Scholar
  24. Fuloria, R.C., Pandey, R.N., Bharali, B.R. and Mishra, J.K. (1992) Stratigraphy, structure and tectonics of Mahanadi offshore Basin. Geol. Surv. India Spec. Publ., no.29, pp.255–265.Google Scholar
  25. Gavrilov, Y.O., Shcherbinina, E.A. and OberhÄNsli, H. (2003) Paleocene-Eocene boundary events in the northeastern Peri-Tethys. Geol. Soc. Amer. Spec. Paper, 369, pp.147–68.Google Scholar
  26. Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad V., Berner, Z. and Fleitmann, D. (2011) Environmental effects of Deccan volcanism across the Cretaceous-Tertiary boundary transition in Meghalaya, India. Earth Planet. Sci. Lett., v.310, pp.272–285.Google Scholar
  27. Govindan, A. (1981) Foraminifera from the infra-and intertrappean subsurface sediments of Narsapur Well-1 and age of the Deccan Trap fl ows, In: S.C. Khosla and R.P. Kachara (Eds.), Proc. 9th Indian Colloquium of Micropalaeontology and Stratigraphy, pp.81–93.Google Scholar
  28. Govindan, A., Ravindran, C.N. and Rangaraju, M.K.R. (1996) Cretaceous stratigraphy and Planktonic foraminiferal zonation of Cauvery basin, South India. In: A. Sahni (Ed.), Cretaceous stratigraphy and palaeoenvironments. Mem. Geol. Soc. India, no.37, pp.155–187.Google Scholar
  29. Handley, L., Pearson, P., Mcmillan, I.K. and Pancost, R.D. (2008) Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania. Earth Planet. Sci., v.275, pp.17–25.Google Scholar
  30. Haq, B.U. (2014) Cretaceous eustacy revisited. Global and Planetary Change, 113, 44–58.CrossRefGoogle Scholar
  31. Haq, B.U., Hardenbol, J. and Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, v.235, pp.1156–1167.CrossRefGoogle Scholar
  32. Higgins, J.A. and Schrag, D.P. (2006) Beyond methane: towards a theory for the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett., v.245, pp.523–537.Google Scholar
  33. Huber, B.T., Macleod, K.G. and Tur, N.A. (2008) Chronostratigraphic framework for upper Campanian–Maastrichtian sediments on the Blake Nose (Subtropical North Atlantic). Jour. Foraminiferal Res., v.38, pp.162–182.CrossRefGoogle Scholar
  34. Husson, D., Galbrun, B., Laskar, J., Hinnov, L.A., Thibault, N., Gardin, S. and Locklair, R.E. (2011) Astronomical calibration of the Maastrichtian (late Cretaceous). Earth Planet. Sci. Lett., v.305, pp.328–340, doi:10.1016/jepsl.2011.03.008.Google Scholar
  35. Jafar, S.A. (1996) The evolution of marine Cretaceous basins of India: calibration with Nannofossil zones. In: A. Sahni (Ed.), Cretaceous stratigraphy and palaeo-environments. Mem. Geol. Soc. India, no.37, pp.121–134.Google Scholar
  36. Jaiprakash, B.C., Singh, J. and Raju, D.S.N. (1993) Foraminiferal events across the K/T boundary and age of Deccan volcanism in Palakollu area, Krishna-Godavari Basin, India. Jour. Geol. Soc. India, v.41, pp.105–117.Google Scholar
  37. Keller, G. (2002) Guembelitria dominated late Maastrichtian planktic foraminiferal assemblages mimic early Danian in the Eastern Desert of Egypt: Marine Micropaleontology, v.47, pp.71–99.Google Scholar
  38. Keller, G. (2003) Biotic effects of impacts and volcanism. Earth Planet. Sci. Lett., v.215, pp.249–264.Google Scholar
  39. Keller, G. (2008) Impact Stratigraphy: old principle -new reality. Gsa Special Paper 437, pp.147–178.Google Scholar
  40. Keller, G. (2014) Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and Effect? In: G. Keller and A.C. Kerr (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geol. Soc. Amer. Spec. Paper 505, doi:10.1130/2014.2505(03)p.Google Scholar
  41. Keller, G. and Abramovich, S. (2009) Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeogr. Palaeoclim. Palaeoecol., v.284, pp.47–62.CrossRefGoogle Scholar
  42. Keller, G. and Pardo, A. (2004) Disaster opportunists Guembelitrinidae— Index for environmental catastrophes: Marine Micropaleontology, v.53, pp.83–116.Google Scholar
  43. Keller, G., LI, L. and Macleod, N. (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: How catastrophic was the mass extinction? Paleogeogr., Paleoclimat., Paleoecol., v.119, pp.221–254.CrossRefGoogle Scholar
  44. Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui, N. and Zaghbib-Turki, D. (2002) Paleoecology of the Cretaceous-Tertiary mass extinction in planktic foraminifera. Paleogeog., Paleoclimat., Paleoecol., v.178, pp.257–298.CrossRefGoogle Scholar
  45. Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A.A. and Stuben, D. (2007a) Chicxulub impact predates KT boundary: New evidence from Brazos, Texas: Earth Planet. Sci. Lett., v.255, no.3–4, pp.339–356.Google Scholar
  46. Keller, G., Adatte, T., Tantawy, A.A., Berner, Z., and Stueben, D. (2007b) High Stress Late Cretaceous to early Danian paleoenvironment in the Neuquen Basin, Argentina. Cretaceous Res., v.28, pp.939–960.CrossRefGoogle Scholar
  47. Keller, G., Adatte, T., Gardin, S., Bartolini, A. and Bajpai, S. (2008) Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India: Earth Planet. Sci. Lett., v.268, pp.293–311.Google Scholar
  48. Keller, G., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N., Jaiprakash, B.C. and Adatte, T., 2011a, Deccan volcanism linked to the Cretaceous-Tertiary boundary (Ktb) mass extinction: New evidence from Ongc wells in the Krishna-Godavari Basin, India: Jour. Geol. Soc. India, v.78, pp.399–428, doi:10.1007/s12594-011-0107-3.Google Scholar
  49. Keller, G., Adatte, T., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N. and Jaiprakash, B.C. (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India: Earth Planet. Sci. Lett., v.341–344, pp.211–221.Google Scholar
  50. Keller, G., Malarkodi, N., Khozeym, H., Adatte, T., Spangenberg, J.E. and Stinnesbeck, W. (2013) Chicxulub impact spherules in the NW Atlantic and Caribbean: Age constraints and Ktb hiatus: Geological Mag., v.150, no.5, pp.885–907.Google Scholar
  51. Keller, G., Punekar, J. and Mateo, P. (2015) Upheavals during the late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Paleogeogr. Paleoclimatol., Paloecol., http://dxdoiorg/10.1016/ jpalaeo.2015.01.019Google Scholar
  52. Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli-Silva, I. and Thomas, E. (1996) Rapid diversification of planktonic foraminifera in the tropical Pacific (Odp Site 865) during the late Paleocene Thermal Maximum. Geology, v.24, pp.423–426.CrossRefGoogle Scholar
  53. Kelly, D.C., Zachos, J.C., Bralower, T.J. and Schellenberg, S.A. (2005) Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene Eocene Thermal Maximum. Paleoceanography, v.20, pp.4023.CrossRefGoogle Scholar
  54. Kent, R.W., Pringle, M.S., Mueller, R.D., Saunders, A.D. and Ghose, N.C. (2002) 40Ar/39Ar Geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau. Jour. Petrol., v.43(7), pp.1114–1153.CrossRefGoogle Scholar
  55. Khozyem, H., Adatte, T., Keller, G., Tantawy, A.A., and Spangenberg, J.E. (2014) The Paleocene-Eocene Gssp at Dababiya, Egypt–Revisited. Episodes, v.37, no.2, pp.78–86.Google Scholar
  56. Khozyem, H., Adatte, T., Spangenberg, J.E., Tantawy, A.A. and Keller, G. (2013) Paleoenvironmental and climatic changes during the Paleocene-Eocene Thermal Maximum (Petm) at the Wadi Nukhul Section, Sinai, Egypt. Jour. Geol. Soc. London, v.170, pp.341–352. doi: 10.1144/jgs2012-046.CrossRefGoogle Scholar
  57. Khozyem, H., Adatte, T., Spangenberg, J.E., Keller, G., Tantawy, A.A. and Ulyanov, A. (2015) New geochemical constraints on the Paleocene-Eocene Thermal Maximum: Dababiya Gssp, Egypt. Paleogeog., Paleoclimat., Paleoecol., v.429, pp.117–135 http://dxdoiorg/10.1016/jpalaeo.2015.04.003.CrossRefGoogle Scholar
  58. Knight, K.B. Renne, P.R. Halkett, A. and White, N. (2003) 40Ar/ 39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan Traps, Earth Planet. Sci. Lett., v.208, pp.85–99.CrossRefGoogle Scholar
  59. Knight, K.B., Renne, P.R., Baker, J., Waight, T. and White, N. (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion’ by A.K. Baksi. Earth Planet. Sci. Lett., v.239, pp.374–382.Google Scholar
  60. Kominz, M.A., Van Sickel, W.A., Miller, K.G. and Browning, J.V. (2002) Sea-level estimates for the latest 100 million years: One-dimensional backstripping of onshore New Jersey boreholes: 22nd Annual Gcssepm Foundation Bob F. Perkins Research Conference, Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Case Histories, pp.303–315.CrossRefGoogle Scholar
  61. Lal, N.K., Siawal, A. and Kaul, A.K. (2009) Evolution of East Coast of India–A Plate tectonic reconstruction. Jour. Geol. Soc. India, v.73, pp.249–260.Google Scholar
  62. LI, L. and Keller, G. (1998a) Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera of South Atlantic Dsdp Sites 525A and 21. Marine Micropaleontology, v.33(1-2), pp.55–86.CrossRefGoogle Scholar
  63. LI, L. and Keller, G. (1998b) Diversification and extinction in Campanian-Maastrichtian planktic foraminifera of northwestern Tunisia: Eclogae Geol. Helvetiae, v.91, pp.75–102.Google Scholar
  64. LI, L. and Keller, G. (1998c) Abrupt deep-sea warming at the end of the Cretaceous. Geology, v.26(11), pp.995–998.CrossRefGoogle Scholar
  65. LI, L., Keller, G., Adatte, T. and Stinnesbeck, W. (2000) Late Cretaceous sea-level changes in Tunisia: a multi-disciplinary approach. Jour. Geol. Soc. London, v.157, pp.447–458.CrossRefGoogle Scholar
  66. LU, G., Adatte, T., Keller, G. and Ortiz, N. (1998) Abrupt climatic, oceanographic and ecologic changes near the Paleocene-Eocene transition in the deep Tethys basin. The Alamedilla section, southern Spain: Ecologica Geologica Helvatica, v.91, pp.293–306.Google Scholar
  67. Malarkodi, N. (2014) Planktonic Foraminifera from Vridhachalam area, Cauvery Basin, South India, Tamil Nadu, Internat. Jour. Sci. Res. (Ijsr), v.3(6), pp.32–35. Issn (online), pp.2319-7064.Google Scholar
  68. Malarkodi, N., Keller, G., Fayazudeen, P.J. and Mallikarjuna, U.B. (2010) Foraminifera from the early Danian Intertrappean beds in Rajahmundry Quarries, Andhra Pradesh, SE India. Jour. Geol. Soc. India, v.75, pp.851–863.Google Scholar
  69. Malarkodi, N. and Chingakham Usharani Devi (2013) Paleocene to early Eocene Planktonic Foraminifera of the Pondicherry area, South India. Geol. Soc. India, Spec. Publ., no.1, pp.1–15.Google Scholar
  70. Macleod, N. and Keller, G. (1991) How complete are Cretaceous/ Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation. Geol. Soc. Amer. Bull., v.103, pp.1439–1457.Google Scholar
  71. Mateo, P., Keller, G., Adatte, T. and Spangenberg, J.E. (2015) Mass wasting during the Cretaceous-Paleogene transition in the North Atlantic: Relationship to the Chicxulub impact? Palaeogeogr. Palaeoclimatol. Palaeoecol. (2015), http://dxdoiorg/10.1016/jpalaeo.2015.01.019Google Scholar
  72. Michael, L. and Krishna, K.S. (2011) Dating of 85ºE Ridge (northeastern Indian Ocean) using marine magnetic anomalies. Curr. Sci., v.100, pp.1314–1322.Google Scholar
  73. Nordt, L., Atchley, S. and Dworkin, S. (2003) Terrestrial evidence for two greenhouse events in the latest Cretaceous: Gsa Today, v.13, no.12, pp.4–9, doi:10.1130/1052-5173(2003)013<4:Teftge>2.0.CO;2.Google Scholar
  74. Olsson, R.K., Hemleben, C., Berggren, W.A. and Huber, B.T. (1999) Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology No.85, 252 p. Smithsonian Institution Press, Washington D.C.Google Scholar
  75. Pardo, A., Ortiz, N. and Keller, G. (1996) Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain, In: N. MacLeod and G. Keller (Eds.), The Cretaceous-Tertiary mass extinction: Biotic and environmental events: New York, W.W. Norton and Company, pp.155–176.Google Scholar
  76. Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., and Berggren, W.A. (2006) Atlas of Eocene planktonic Foraminifera. Cushman Foundation for Foraminiferal Research Special Publication No.41, 513p.Google Scholar
  77. Perch-Nielsen, K. (1979) Calcareous nannofossil zonation at the Cretaceous–Tertiary boundary in Denmark. Proc. Cretaceous-Tertiary Boundary Events Symp., Copenhagen, v.1, pp.115–135.Google Scholar
  78. Perch-Nielsen, K. (1985) Cenozoic calcareous nannofossils. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds.), Plankton Sstratigraphy. Cambridge, Cambridge University Press, pp.422–454.Google Scholar
  79. Punekar, J., Mateo, P.M. and Keller, G. (2014a) Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey, In: G. Keller and A.C. Kerr (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geol. Soc. Amer. Spec. Paper 505, doi:10.1130/2014.2505(04).Google Scholar
  80. Punekar, J., Keller, G., Khozyem, H., Hamming, C., Adatte, T., Tantawy, A.A. and Spangenberg, J.E. (2014b) Late Maastrichtian-early Danian high-stress environment and delayed recovery linked to Deccan volcanism. Cretaceous Res., v.49, pp.1–20.CrossRefGoogle Scholar
  81. Raju, D.S.N., Ravindran, C.N., Dave, A., Jaiprakash, B.C. and Singh, J. (1991) K/T boundary events in the Cauvery and Krishna–Godavari Basins and the age of Deccan Volcanism. Geoscience Jour., vol. Xii, no.2, pp.177–190.Google Scholar
  82. Raju, D.S.N., Jaiprakash, B.C., Ravindran, C.N., Kayanasunder, R. and Ramesh, P. (1994) The magnitude of hiatus and sealevel changes across K/T boundary in Cauvery and Krishna-Godavari basins, India. Jour. Geol. Soc. India v.44, pp.301–315.Google Scholar
  83. Raju, D.S.N., Jaiprakash, B.C., Kumar, A., Saxena, R.K., Dave, A., Chatterjee, T.K. and Mishra, C.M. (1995) Age of Deccan volcanism across Ktb in Krishna-Godavari Basin: new evidences. Jour. Geol. Soc. India, v.45, pp.229–233.Google Scholar
  84. Raju, D.S.N., Jaiprakash, B.C. and Kumar, A. (1996) Paleoenvironmental set-up and age of basin floor just prior to the spread of Deccan volcanism in the Krishna-Godavari Basin, India. Mem. Geol. Soc. India, no.37, pp.285–295.Google Scholar
  85. Raju, D.S.N. and Mishra, P.K. (1996) Cretaceous stratigraphy of India: A Review, In: A. Sahani (Ed.), Cretaceous Stratigraphy and Paleoenvironments. Mem. Geol. Soc. India, L. Rama Rao Volume, no.37, pp.1–36.Google Scholar
  86. Raju, D.S.N., Yadagiri, K., Mohanty, A.D. and Durge, P.M. (2014) New volcanic phase in Krishna-Godavari Basin with special reference to Rajmahal Trap equivalents. Ongc Bull., v.48(5), pp.86–97.Google Scholar
  87. Rangaraju, M.K., Agarwal, A. and Prabhakar, K.N. (1993) Tectono-Stratigraphy, Structural Styles, Evolutionary Model and Hydrocarbon Habitat, Cauvery and Palar Basins. In: S.K. Biswas (Ed.), Proc. 2nd Seminar on Petroliferous basins of India. Indian Petroleum Publishers, Dehradun, India, pp.371–396.Google Scholar
  88. Reddy, A.N., Jaiprakash, B.C., Rao, M.V., Chidambaram, L. and Bhaktavatsala, K.V. (2013) Sequence stratigraphy of late Cretaceous Successions in the Ramnad Sub-basin, Cauvery Basin, India. In: N. Malarkodi, G. Keller, A.N. Reddy, and B.C. Jaiprakash (Eds.), Proc. Xxiii Indian Colloquium on Micropaleontology and Stratigraphy and International Symposium on Global Bioevents in Earth’s History. Geol. Soc. India Spec. Publ., No.1, pp.78–97.Google Scholar
  89. Saxena, R.K. and Misra, C.M. (1994) Time and duration of Deccan volcanism in the Razole area, Krishna-Godavari Basin, India. Curr. Sci., v.66(1), pp.73–76.Google Scholar
  90. Scotese, C.R. (2013) Map 16, KT Boundary (65.5 Ma, latest Maastrichtian), Paleomap PaleoAtlas for ArcGis, volume 2, Cretaceous, Paleomap Project, Evanston, IL.Google Scholar
  91. Schoene, B., Samperton, K.M., Eddy, M., Keller, G., Adatte, T., Bowring, A., Khadri, S.F.R. and Gertsch, B. (2015) U-Pb geochronology of the Deccan Traps andrelation to the end-Cretaceous mass extinction. Science, v. 347 (issue 96218), pp.182–184.CrossRefGoogle Scholar
  92. SchÖBel, S., Wall, H., Ganerod, M., Pandit, M.K. and Rolf, C. (2014) Magnetostratigraphy and 40Ar/39Ar geochronology of the Malwa Plaeau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences. Jour. Asian Earth Sci., v.89, pp.28–45.CrossRefGoogle Scholar
  93. Schulte, P., Scheibner, C. and Speijer, R. (2011) Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene Thermal Maximum in the Dababiya Quarry section, Egypt. Chemical Geol., v.285, pp.167–183.CrossRefGoogle Scholar
  94. Self, S., Jay, A.E., Widdowson, M. and Keszthelyi, L.P. (2008a) Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth? Jour. Volc. Geotherm. Res., v.172, pp.3–19.Google Scholar
  95. Sissingh, W. (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geol. Mijnb., v.56, pp.37–65.Google Scholar
  96. Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.J. and Stein, R. (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, v.441, pp.610–613.CrossRefGoogle Scholar
  97. Speijer, R.P., Schmitz, B. and Luger, P. (2000) Stratigraphy of late Palaeocene events in the Middle East: Implications for low to middle-latitude successions and correlations: Jour. Geol. Soc. London, v.157, pp.37–47.CrossRefGoogle Scholar
  98. Sreejith, Rsr.M., Krishna, K.S. and Bansal, A.R. (2008) Structure and isostatic compensation of the Comorin Ridge, north central Indian Ocean. Geophys. Jour. Internat., v.175, pp.729–741.Google Scholar
  99. Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., et al. (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, v.429, pp.542–545.CrossRefGoogle Scholar
  100. Tantawy, A.A.A., Keller, G. and Pardo, A. (2009) Late Maastrichtian volcanism in the Indian Ocean: Effects on Calcareous Nannofossils and planktic Foraminiferea. Paleogeogr., Paleoclimatol., Paleoecol., v.284, pp.63–87. Doi: 10.1016/jpalaeo.2009.08.025CrossRefGoogle Scholar
  101. Torfstein, A., Winckler, G. and Tripati, A. (2010) Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (Petm). Climate of the Past, v.6, pp.265–272.CrossRefGoogle Scholar
  102. Venkatesan, T.R., Pande, K. and Gopalan, K. (1993) Did Deccan volcanism pre-date the Cretaceous-Tertiary transition? Earth Planet. Sci. Lett., v.119(1-2), pp.181–189.CrossRefGoogle Scholar
  103. Von Salis, K. and Saxena, R.K. (1998) Calcareous nannofossils across the K/T boundary and the age of the Deccan Trap volcanism in southern India. Jour. Geol. Soc. India, v.51, pp.183–192.Google Scholar
  104. Wattkinson, M.P., Hart, M.B. and Joshi, A. (2007) Cretaceous tectonostratigraphy and the development of the Cauvery Basin, southeast India. Petroleum Geoscience, v.13, pp.181–191.CrossRefGoogle Scholar
  105. Westerhold, T., RÖHL, U., Mccarren, H.K. and Zachos, J.C., 2009. Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (Petm): New insights from exact stratigraphic position of key ash layers +19 and -17, Earth Planet. Sci. Lett., v.287, pp.412–419.CrossRefGoogle Scholar
  106. Wilf, P., Johnson, K.R. and Huber, B.T. (2003) Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci., Usa, v.100(2), pp.599–604.CrossRefGoogle Scholar
  107. Zachos, J.C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. and Bralower, T. (2006) Extreme warming of the mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from Tex86 and isotope data. Geology, v.34, pp.737–740.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2016

Authors and Affiliations

  1. 1.Geosciences DepartmentPrinceton UniversityPrincetonUSA
  2. 2.ONGCRegional Geoscience LaboratoryChennaiIndia

Personalised recommendations