Skip to main content
Log in

Subsurface coal fire mapping using magnetic survey at East Basuria Colliery, Jharkhand

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The present study deals with the mapping and understanding of sub-surface coal fire on the basis of magnetic susceptibility of materials that changes with the temperatures rise above or below the Curie temperature. The magnetic data acquisition has been carried out using high resolution GSM-19T proton precession magnetometer. The acquired magnetic data have been processed and analyzed to study magnetic field anomaly of East Basuria Colliery in Jharia coalfield, Jharkhand, India for mapping and understanding of sub-surface coal fire. Residual component of the total magnetic field anomaly map of the area has been calculated to enhance and delineate the coal fire region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, R., Singh, D., Chauhan, D.S. and Singh, K.P. (2006) Detection of coalminefires in the Jharia coal field using NOAA/AVHRR data. Jour. Geophys. Engg., v.3, pp.212–218.

    Article  Google Scholar 

  • Banerjee, S.C., Nandy, D.K., Banerjee, D.D. and Chakravorty, R.N. (1972) Classification of coal with respect to their susceptibility to spontaneous combustion. Trans. Min. Metall. Inst. India, v.59(2), pp.15–31.

    Google Scholar 

  • Bartel, L.C. (1982) Evaluation of the CSAMT geophysical technique to map abandoned coal mine fires. Contract DEAC04-76DP00789. Department of Energy, Sandia National Laboratories, Albuquerque, New Mexico, U.S.A. In: Proc. 52nd Annual Internat. Meet. Soc. Explor. Geophys., Dallas, Texas, U.S.A., pp.419–421.

    Google Scholar 

  • Bell, F.G., Bullock, S.E.T., Halbich, T.F.J. and Lindsay, P. (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfire, South Africa. Int. Jour. Coal Geol., v.45, pp.195–216.

    Article  Google Scholar 

  • Bhattacharya, A., Reddy, S. and Mukherjee, T. (1991) Multi-tier remote sensing data analysis for coal fire mapping in Jharia coal field of Bihar, India. Asian Conf. on Rem Sens., Singapore, 30 October–5 November 1991, v.1, pp.22-1-6.

    Google Scholar 

  • Chandra, D. (1992) Jharia Coalfields, Geol. Society of India, Bangalore, pp.149.

    Google Scholar 

  • Chatterjee, R.S. (2006) Coal fire mapping from satellite thermal IR data — a case example in Jharia coalfield, Jharkand, India. ISPRS Jour. Photogram. Rem. Sens., v.60, pp.113–128.

    Article  Google Scholar 

  • CMPDI (2003) Scheme for Dealing with Fire for Protection of KT Link Line at East Busseriya colliery, pp.1-16.

  • Den, W., Wan, Y. and Zhao, R. (2001) Detecting coal fires with a neural network to reduce the effect of solar radiation on Landsat Thematic Mapper thermal infrared images. Int. Jour. Rem. Sens., v.22, pp.933–944.

    Article  Google Scholar 

  • Duba, A. (1983) Electrical conductivity of Colorado oil shale to 900°C. Fuel, v.62, pp.966–972.

    Article  Google Scholar 

  • Gielisch, H. (2007) Detecting concealed coal fires. Rev. Engg. Geol., v.18, pp.199–210.

    Article  Google Scholar 

  • Greene, G.W., Moxham, R.M. and Harvey, A.H., (1969) Aerial infrared surveys and borehole temperature measurements of coal minefires in Pennsylvania[C]. Remote Sens. Environ., v.VI (1), 517p.

    Google Scholar 

  • Hooper, R.L. (1987) Factors affecting the magnetic susceptibility of baked rocks above a burned coal seam. Int. Jour. Coal Geol., v.9, pp.157–169.

    Article  Google Scholar 

  • Ide, T.S., Crook, N., and Orr Jr., F.M. (2011a) Magnetometer measurements to characterize a subsurface coal fire. Int. Jour. Coal Geol., v.87, pp.190–196.

    Article  Google Scholar 

  • Ide, T.S., Pollard, D. and Orr Jr., F.M. (2011b) Comparison of methods to estimate the rate of CO2 emissions and coal consumption from a coal fire near Durango,CO. Int. Jour. Coal Geol., v.86, pp.95–107.

    Article  Google Scholar 

  • King, A. (1987) Cindered coal detection using transient electromagnetic methods. Geoexploration, v.24, pp.367–379.

    Article  Google Scholar 

  • Kuenzer, C., Zhang, J., Hirner, A., Bo, Y., Jia, Y. and Sun, Y. (2005) Multi-temporal in situ Mapping of the Wuda Coal Fires from 2000 to 2005 — Assessing Coal Fire Dynamics. Proc. Int. Conf. on Coal Fire Res., Beijing, China, pp.104–106.

    Google Scholar 

  • Kuenzer, C., Zhang, J., Li, J., Voigt, S., Mehl, H. and Wagner, W. (2007) Detection of unknown coal fires: synergy of coal fire risk area delineation and improved thermal anomaly extraction. Int. Jour. Rem. Sens., v.28, pp.4561–4585.

    Article  Google Scholar 

  • Lohrer, C., Schmidt, M. and Krause, U. (2005) Influence of Environmental Parameters on the Self Ignition of Coal. Proc. of the Int. Conf. on Coal Fire Research, Beijing, China, pp.110–112.

    Google Scholar 

  • Mazumdar, T.J., Pal, S.K. and Bhattacharya, A.K., (2012) Generation of Emissivity and Land Surface Temperature Maps using MODIS TIR Data for lithological Mapping over the Singhbhum-Orissa Craton, Jour. Geol. Soc. India, v.80, pp.685–699.

    Article  Google Scholar 

  • Michalski, S.R. (2004) The Jharia mine fire control technical assistance project: an analysis. Int. Jour. Coal Geol., v.59, pp.83–90.

    Article  Google Scholar 

  • Mishra, R.K., Bahuguna, P.P. and Singh, V.K., (2011) Detection of coal mine fire in Jharia Coal Field using Landsat-7 ETM+ data. Int. Jour. Coal Geol., v.86, pp.73–78.

    Article  Google Scholar 

  • Munshi, P.L. (1995) Experience of dealing with fires in Jharia Coalfield–Introduction to Diagnostic Technique, National seminar on Minefires. Dept. of Mining Engineering, Institute of Technology, Banaras Hindu University, pp.82–90.

    Google Scholar 

  • Pal, S.K., Vaish, J., Kumar, S. and Bharti, A.K. (2015) Coalfire mapping of East Basuria Colliery, Jharia coal field using Vertical Derivative Technique of Magnetic data. Jour. Earth System Science (accepted).

    Google Scholar 

  • Prakash, A. and Gupta, R.P. (1999) Surface fires in JCF, India–their distribution and estimation of area and temperature from TM data. Int. Jour. Rem. Sens., v.20, pp.1935–1946.

    Article  Google Scholar 

  • Rosema, A., Guan, H., Genderen, J.L.V., Veld, H., Vekerdy, Z., Katen, A.M.T, Prakash, A. and Sharif, M. (1999) Manual of coal fire detection and monitoring, Report of the Project: Development and Implementation of a Coal Fire Monitoring and Fighting System in China, 245p.

    Google Scholar 

  • Saraf, A.K., Prakash, A., Sengupta, S. and Gupta, R.P. (1995) Landsat-TM data for estimating ground temperature and depth of subsurface coalfire in the Jharia coalfield, India. Int. Jour. Rem. Sens., v.16, pp.2111–2124.

    Article  Google Scholar 

  • Schaumann, G., Siemon, B. and Yu, C.C. (2008) Geophysical investigation of Wuda Coal Mining Area, Inner Mongolia: Electromagnetics and Magnetics for coal fire detection. In: UNESCO, Mera (Ed.), Spontaneous Coal Seam Fires: Mitigating a Global Disaster. International Research for Sustainable Control and Management. ERSEC Ecological Book Series, v.4. Tsinghua University Press and Springer, Beijing, 350p.

    Google Scholar 

  • Singh, A.K., Singh, R.V., Singh, M.P., Chandra, H. and Shukla, N.P. (2007) Mine fire gas indices and their application to Indian underground coal mine fires. Internat. Jour. Coal Geol., v.69, pp.192–204.

    Article  Google Scholar 

  • Shao, Z., Wang, D., Wang., Y. and Zhong, X., (2014) Theory and application of magnetic and self-potential methods in detection of the Heshituologai coalfire, China, Jour. Appld. Geophys., v.104, pp.64–74.

    Article  Google Scholar 

  • Singh, K.K.K., Singh, K.B., Lokhande, R.D. and Prakash, A. (2004) Multielectode Resistivity imaging technique for the study of coal seam. Jour. Sci. Ind. Res., v.63, pp.927–930.

    Google Scholar 

  • Stracher, G.B. (2004) Coal fires burning around the world: a global catastrophe. Int. Jour. Coal Geol., v.59, pp.1–6.

    Article  Google Scholar 

  • Stracher, G.B. and Taylor, T.P. (2004) Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int. Jour. Coal Geol., v.59, pp.7–17.

    Article  Google Scholar 

  • Sternberg, R. and Lippincott, C. (2004) Magnetic surveys over clinkers and coal seam fires in Western North Dakota. Presentation at the Denver Annual Meeting of the Geological Society of America, Denver, Colorado, U.S.A., October 7-10, 2004.

    Google Scholar 

  • van Genderen, J.L. and Guan, H. (1997) Environmental monitoring of spontaneous combustion in the North China coalfields. Final report to European Commission under contract No. Cl1–CT93–0008.

    Google Scholar 

  • Vaish, J. and Pal, S.K. (2014) Geological mapping of Jharia Coalfield, India using GRACE EGM2008 gravity data: a vertical derivative approach, Geocarto International, DOI:10.1080/10106049.2014.905637.

    Google Scholar 

  • Zhang, X.M. (1998) Coalfires in North-west China, Detection, Monitoring and Prediction using Remote Sensing data. ITC PhD. thesis, pp.69–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaish, J., Pal, S.K. Subsurface coal fire mapping using magnetic survey at East Basuria Colliery, Jharkhand. J Geol Soc India 86, 438–444 (2015). https://doi.org/10.1007/s12594-015-0331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0331-3

Keywords

Navigation