Skip to main content
Log in

Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura coalfield

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Macroscopic charcoal is recovered from the sub-surface sediments from Bore core SKB-1 which intersected Barren Measure Formation and Raniganj Formation of South Karanpura coalfield. These charcoal particles are widely accepted to be of palaeowildfire products and this study contributes to the Middle and Late Permian wildfire data of Indian peninsula. In the present investigation the charcoal particles are studied using reflected light, transmitted light and Scanning Electron microscopy to document their anatomical structure, morphology and temperature of formation. The inertinite reflectance data reveal that these charcoals were formed at a temperature of 600° C which is evident by the homogenized cell walls as homogenization takes place at temperatures above 500° C. Petrographic analysis reveals high inertinite content and the calculated Gelification Index and Tissue preservation Index suggest that the sediments from which the charcoal particles were retrieved were deposited in a dry forest swamp which was conducive for the forest fire to propagate as the forest litter provided the fuel load. The morphological characters of charcoal were utilized in delineating its taphonomy and it indicates that they are hypautochthonous in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bird, M.I. (1997) Fire in the Earth Sciences, Episodes, v.20, pp.223–226.

    Google Scholar 

  • Bustin, R.M. and Guo, Y. (1999) Abrupt changes. Internat. Jour. Coal Geol., pp.237–260.

    Google Scholar 

  • Clark, F.R.S. and Russell, D.A. (1981) Fossil charcoal and the palaeoatmosphere. Nature, v.290, pp.428.

    Article  Google Scholar 

  • Cohen, A.D. (1974) Evidence of fires in the ancient Everglades and coastal swamps of Southern Florida. Environments of South Florida, Present and Past: Miami Geol. Soc. Mem., pp.213–218.

    Google Scholar 

  • Cohen, A.D., Raymond, J., Archuleta, L.M. and Mann, D.A. (1987) Preliminary study of the reflectance of huminite macerals in recent surface peats. Organic Geochemistry, pp.429–430.

    Google Scholar 

  • Cope, M.J. (1981) Products of natural burning as a component of the dispersed organic matter of sedimentary rocks, Organic maturation studies and fossil fuel exploration. Academic Press, New York, pp.89–109.

    Google Scholar 

  • Cope, M.J. and Chaloner, W.G. (1980) Fossil charcoal as evidence of past atmospheric composition. Nature, pp.647–649.

    Google Scholar 

  • Cope, M.J. and Chaloner, W.G. (1985) Wildfire: an interaction of biological and physical processes, Geological factors and the evolution of plants. Yale University Press, pp.257–277.

    Google Scholar 

  • Elliott, J.G. and Parker, R.S. (2001) Developing a post-fire chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek Watershed, Colorado, U.S.A. Hydrological Processes, v.15, pp.3039–3052

    Article  Google Scholar 

  • Fagerlind, F. (1952) The real signification of pollen diagrams. Botaniska Notiser 2, pp.185–224.

    Google Scholar 

  • Falcon, R.M.S. and Snyman, C.P. (1986) An introduction to coal petrography: atlas of petrographic constitutents in the bituminous coals of southern Africa. Geol. Soc.South Africa Rev. Paper, v.2, pp.27.

    Google Scholar 

  • Forbes, M.S., Raison, R.J. and Skjemstad, J.O. (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the total environment, v.370, pp.190–195.

    Article  Google Scholar 

  • Glasspool, I. (2000) A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeo., Palaeoclimat., Palaeoeco., v.164, pp.357–380.

    Article  Google Scholar 

  • Goldberg, E.D. (1985) Black Carbon in the Environment. John.Wiley and Sons, New York, 198p.

    Google Scholar 

  • Griffin, J.J. and Goldberg, E.D. (1979) Morphologies and origin of elemental carbon in the environment. Science, v.206, pp.563–565.

    Article  Google Scholar 

  • Guo, Y. and Bustin, R.M. (1998) FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. Internat. Jour. Coal Geol., pp.29–53.

    Google Scholar 

  • ICCP (1963) International handbook of coal petrology, 2nd edition, Centre National de la Researche Scientifique, Paris.

    Google Scholar 

  • ICCP (1998) International committee for Coal and Organic Petrology, The new vitrinite classification (ICCP system 1994). Fuel, pp. 349–358.

    Google Scholar 

  • ICCP (2001) International committee for Coal and Organic Petrology, The new Inertinite classification (ICCP system 1994). Fuel, pp. 459–471.

    Google Scholar 

  • Inoue, J. and Yoshikawa Shusaku (2003) Identification of charcoal in Quaternary sediments and estimations of the charred temperature by reflectance4 measurements and H/C ratio analysis and observation through reflectance and scanning electron microscopy. Jour. Geosci., Osaka City University, v.46, pp.127–134.

    Google Scholar 

  • ISO 7404-2: 1984 (1984) Methods for the petrographic Analysis of Bituminous coal and Anthracite: Part 2. Methods of Preparing Coal Samples. International Organization for Standardization–ISO, Geneva. 8 pp

    Google Scholar 

  • ISO 7404-3: 1984 (1984) Methods for the petrographic Analysis of Bituminous coal and Anthracite: Part 2. Methods of Determining Maceral Group Composition. International Organization for Standardization–ISO, Geneva. 4 pp

    Google Scholar 

  • ISO 7404-5: 1984 (1984) Methods for the petrographic Analysis of Bituminous coal and Anthracite: Part 2. Methods of Determining Microscopically The Reflectance Of Vitrinite. International Organization for Standardization–ISO, Geneva. 11 pp

    Google Scholar 

  • Jasper, A., Guerra-Sommer, M., Uhl, D., Bernardes-De-Oliveira, M.E.C., Ghosh, A.K., Tewari, R. and Secchi, M.I. (2012) Palaeobotanical evidence of wildfires in the Upper Permian of India: macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin. The Palaeobotanist, v.61, pp.75–82.

    Google Scholar 

  • Jasper, A., Margot Guerra-Sommer, Abdalla, M.B., Hamad, A., Bamford, M., Bernardes-De-Oliveira, M.E.C., Tewari, R., Uhl, D., (2013) The burning of Gondwana: Permian fires on the southern continent-a palaeobotanical approach. Gondwana Res., v.24, pp.148–160.

    Article  Google Scholar 

  • Jones, T.P. (1993) New morphological and chemical evidence for a wildfire origin for fusain from comparisons with modern charcoal, Special Papers in Palaeontology. The Palaeontological Association, pp.113–123.

    Google Scholar 

  • Jones, T.P., Scott, A.C. and Cope, M.J. (1991). Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bulletin de la Societe Geologique de France, pp. 193–200.

    Google Scholar 

  • Kuhlbusch, T.A.J., Crutzen, P.J. (1996). Black carbon, the global carbon cycle and atmospheric carbon dioxide. In: J.S. Levine, (Ed.), Biomass Burning and Global Change. Remote sensing, Modelling and Inventory Develoopment and Biomass Burning in Africa, v.1. MIT Press, Cambridge, Massachusetts, pp.160–169.

    Google Scholar 

  • Kwiecinska, B. and Petersen, H.I. (2004) Graphite, semi-graphite, natural coke, and natural char classification — ICCP system. Internat. Jour. Coal Geol., v.57, pp.99–116.

    Article  Google Scholar 

  • Marlon J.R., Bartlein, P.J., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E., Joos, F., Power, Mlj. and Prentice, I.C. (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geosci., v.1, pp.607–702.

    Article  Google Scholar 

  • Marlon, J.R., Bartelein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.L.M., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Danierls, M., Hu, W., Umbanhowar Jr., C.E. Andwhitlock, C. (2009) Wildfire responses to abrupt climate change in North America. Proc. National Acad. Sci. USA, v.106, pp.2519–2524.

    Article  Google Scholar 

  • Masiello, C.A., Druffel, E.R.M. (1998) Black carbon in deep sea sediments. Science, v.280, pp.1911–1913.

    Article  Google Scholar 

  • Mcparland, L.C., Scott, A.C., Collinson, M.E. and Campbell. (2009) The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeological and Anthropological Sciences, v.1, pp.249–261.

    Article  Google Scholar 

  • Meyer, G.A., Wood, S.H. (1999) Alluvial fan deposits as recorders of fire and geomorphic response. Geol. Soc. Amer., Abstracts with Programs, v.31, pp.212.

    Google Scholar 

  • Mishra, H.K., Moitra, J., Sharan, P.K. and Shrivastava, B.B.P. (1998) Petrographic composition and rank of some coals of East-Bokaro Coalfields with special reference to benefication studies and depth of burial. In: M.P. Singh (Ed.), Recent Researches in Economic Geology; Coal and Organic Petrology, v.1, pp.99–128.

    Google Scholar 

  • Moody, J.A. and Martin, D.A. (2009) Forest fire effects on geomorphic processes. In: A. Cerda and P.R. Robichaud, (Eds.), Fire effects on soils and restoration strategies. Science Publishers Inc., New Hampshire, pp. 41–80.

    Chapter  Google Scholar 

  • Navale, G.K.B. and Saxena, R. (1989) An appraisal of coal petrographic facies in Lower Gondwana (Permian) coal seams of India. Internat. Jour. Coal Geol., v.12, pp.553–588.

    Article  Google Scholar 

  • Nichols, G.., Cripps, J.A., Collinson, M.E., Scott, A.C. (2000) Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeo., Palaeoclimat. Palaeoeco., v.164, pp.43–56.

    Article  Google Scholar 

  • Patterson III, W.A., Kevin, J. Edwards, David. J. Maguire (1987) Microscopic charcoal as a fossil indicator of fire. Quaternary Sci. Rev., v.6, pp.3–23.

    Article  Google Scholar 

  • Petersen, H.I. (1998) Morphology, formation and palaeoenvironmental implications of naturally formed char particles in coals and carbonaceous mudstones. Fuel, v.77, pp.1177–1183.

    Article  Google Scholar 

  • Pyne, S.J., Andrews, P.L. and Laven, R.D. (1996) Introduction to Wildland Fire. John Wiley & Sons, New York, 769p.

    Google Scholar 

  • Schmidt, M.W.I. and Noack, A.G. (2000) Black carbon in soils and sediments: analysis, distribution, implications and current challenges. Global Biogeochemical cycles, v.14, pp.777–793.

    Article  Google Scholar 

  • Scott, A.C. (1989) Observations on the nature and origin of fusain. Internat. Jour. Coal Geol., pp.443–475.

    Google Scholar 

  • Scott, A.C. (2000) The Pre-quaternary History of Fire. Palaeogeo. Palaeoclimat. Palaeoeco., v.164, pp.81–329.

    Google Scholar 

  • Scott, A.C. (2001) Preservation by fire. In: D.E.G. Briggs and P.J. Crowther (Eds.), Palaeobiology II. Blackwells, Oxford, pp. 277–280

    Google Scholar 

  • Scott, A.C. (2002) Coal petrology and the origin of coal macerals: a way ahead? Internat. Jour. Coal Geol., pp.119–134.

    Google Scholar 

  • Scott, A.C. (2003) Charcoal in sediments. In: G.V. Middleton, (Ed.), Encyclopaedia of sediments and sedimentary rocks. Klewer Academic Publishers,, pp. 121–123

    Google Scholar 

  • Scott, A.C. (2010) Charcoal recognition, taphonomy and uses in Palaeoenvironmental analysis. Palaeogeo., Palaeoclimat., Palaeoeco., v. 291, pp.11–39.

    Article  Google Scholar 

  • Scott, A.C. and Jones, T.P. (1991) Microscopical observations of Recent and fossil charcoal. Microscopy and Analysis, v.24, pp.13–15.

    Google Scholar 

  • Scott, A.C. and Jones, T.P. (1994) The nature and influence of fire in Carboniferous ecosystems. Palaeogeo. Palaeoclimat. Palaeoeco., v.106, pp.91–112.

    Article  Google Scholar 

  • SCOTT, A.C. and GLASSPOOL, I.J. (2007). Observations and experiments on the origin and formation of inertinite group macerals. Internat. Jour. Coal Geol., pp.53–66.

    Google Scholar 

  • Singh, P.K, Singh, M.P., Prachiti, P.K., Kalpana, M.S., Manikyamba, C, Lakshminarayana, G., Singh, A.K. and Naik, A.S. (2012) Petrographic Characteristics and carbon isotopic composition of Permian coal: Implications on depositional environment of Sattupalli Coalfield, Godavari valley, India. Internat. Jour. Coal Geol., v.90–91, pp.34–42.

    Article  Google Scholar 

  • Smith, D.M., Griffin, J.J. and Goldberg, E.D. (1973) Elemental carbon in marine sediments: a baseline for burning. Nature, v.241, pp.268–270.

    Article  Google Scholar 

  • Stopes, M.C. (1935) On the petrology of banded bituminous coal. Fuel, pp.4–13.

    Google Scholar 

  • Tanner, L.H., Chapman, M.G. and Zeigler, K.E. (2003) Facies analysis and sedimentalogical model for deposition of bonebearing strata in the Petrified Forest Formation at Snyder Quarry, north-central New Mexico. New Mexico Museum of Natural History and Science Bull., v.24, pp.41–48.

    Google Scholar 

  • Tanner, L.H., Xin Wang and Morabito, A.C. (2012) Fossil charcoal from the middle Jurassic of the Ordos Basin, China and its palaeoatmospheric implications. Geoscience Frontiers, v.3, pp.493–502.

    Article  Google Scholar 

  • Uhl, D., Jasper, A. and Schweigert, G., (2012) Charcoal in the Late Jurassic (Kimmeridgian) of Western and Centrla Europe — palaeoclimatic and palaeoenvironmental significance. Palaeobiology Palaeoenvironment, v.92, pp.329–341.

    Article  Google Scholar 

  • Webb, T. and Mcandrews, J.H. (1976) Corresponding patterns of contemporary pollen and vegetation in central north America. Geol. Soc. Amer. Mem., v.145, pp. 267–299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, S., Murthy, S., Chakraborty, B. et al. Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura coalfield. J Geol Soc India 85, 567–576 (2015). https://doi.org/10.1007/s12594-015-0251-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0251-2

Keywords

Navigation