Skip to main content
Log in

The mechanisms and geotechnical characteristics of slope failures at a mining district, southeast Nigeria

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

A procedure encompassing field, laboratory and numerical analyses was employed to re-analyze the mechanism of slope failures at a mining district in south eastern Nigeria. The slopes have been re-evaluated on the basis of new evidence. The study identified 43 landslide events which were mainly shallow, short run-out slides triggered during rainfall. The sand grains were analysed by scanning electron microscope for evidence of microstructures, surface texture and grain crushing. The analysis revealed that the soil particles associated with landslide are somewhat rounded, fairly sorted, and absence of any grain crushing. Shearing tests were carried out at various normal stress and relative density conditions. The specimens with relative density of about 32 % responded to shearing in a strain-softening pattern; and as normal stress and over-consolidation ratio increased, there was no transition from contractive to dilative behaviour. On the contrary, under a constant normal stress (196 kPa) and increasing relative density (from 45.9 % to 75.5 %), the soils exhibited dilative behaviours. It is shown that increase in relative density, normal stress or overconsolidation ratio did not affect the brittleness index significantly. A numerical method based on strength reduction technique simulated a landslide which structure, run-out distance and distribution area were consistent with field observations. It is deduced that the slopes are unstable under intense rainfall conditions due to the effects of soil characteristics, excess pore water generation and the alternating swelling and shrinkage of the claystone layers interbedded with the sand bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Saigh, N.H. and Al-Dabbagh, Th. H. (2010) Identification of landslide slip-surface and its shear strength: A new application for shallow seismic refraction method. Jour. Geol. Soc. India, v.76(2), pp.175–180

    Article  Google Scholar 

  • Anderson, S.A. and Sitar, N. (1995) Analysis of rainfall-induced debris flow. Jour. Geotech. Engg., v.121(7), pp.544–552

    Article  Google Scholar 

  • Anderson, M.G., Holcombe, E.A. and Renaud, J.P. (2007) Assessing slope stability in unplanned settlements in developing countries. Jour. Environ. Mgmt., v.85(1), pp.101–111

    Google Scholar 

  • Benkhelil, J. (1989) The Origin and Evolution of the Cretaceous Benue Trough (Nigeria). Jour. African Earth Sci., v.8, pp.251–282.

    Article  Google Scholar 

  • Campbell, R.H. (1975) Soil slips, debris flows and rainstorms in the Santa Monica mountains and vicinity, Southern California. USGS Prof Paper, v.851

  • Chacon, J., Irigaray, C., Fernandez, T. and El Hamdouni R. (2006) Engineering geology maps: landslides and Geographical Information Systems (GIS). Bull. Engg. Geol. Environ., v.65, pp.341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Corominas, J. (2001) Landslides and climate. In: E. Bromhead, N. Dixon and M.L. Iben (Eds.), 8th international symposium on landslides, v.4, Balkema, Cardiff, pp.1–33

    Google Scholar 

  • Crozier, M, (1986) Landslides: Causes, Consequences and Environment, Croom Helm, London, 252p.

    Google Scholar 

  • Cruden, D.M. and Varnes, D.J. (1996) Landslide types and processes. In: A.K. Turner and R.L. Schuster (Eds.), Special report 247: landslides investigation, mitigation. National Research Council, Transportation Research Board, Washington D.C., pp 36–75.

    Google Scholar 

  • Fell, R. (1994) Landslide risk assessment and acceptable risk. Can Geotech. Jour., v.31, pp.261–272. doi:10.1139/t94-031

    Article  Google Scholar 

  • Fukuoka, M. (1980) Landslides associated with rainfall. Geotech. Engg., v.11, pp.1–29.

    Google Scholar 

  • Geertsema, M., Schwab, J.W., Blais-Stevens, A. and Sakals M.E. (2009) Landslides impacting linear infrastructure in west central British Columbia. Natural Hazards, v.48, pp.59–72.

    Article  Google Scholar 

  • Giannecchini, R. (2006) Relationship between rainfall and shallow landslides in the southern ApuanAlps (Italy). Natural Hazards Earth System Sci., v.6, pp.357–364.

    Article  Google Scholar 

  • Glade, T., Anderson, M.G. and Crozier, M.J. (Eds.) (2005) Landslide risk assessment. Wiley, Chichester

    Google Scholar 

  • Gostelow, P. (1991) Rainfall and landslides, In: M. Almeida-Teixeira (Ed.), Prevention and Control of Landslides and Other Mass Movements, CEC, Brussels, pp.139–161.

  • Gupte, S.S., Singh, R., Vishal, V. and Singh, T.N. (2013) Detail investigation of stability of in-pit dump slope and its capacity optimization. Internat. Jour. Earth Sci. Engg., v.6(2), pp.146–159.

    Google Scholar 

  • Hungr, O., Evans, S.G., Bovis, M.J. and Hutchinson, J.N. (2001) Review of the classification of landslides of the flow type. Environ. Engg. Geosci., v.7, pp.221–238.

    Article  Google Scholar 

  • Igwe, O., Mode, W., Nnebedum, O., Okonkwo, I. and Oha, I. (2013) The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State, Nigeria. Environmental Earth Science DOI 10.1007/s12665-013-2647-x

    Google Scholar 

  • Igwe, O, (2012) ICL/IPL regional activities in West Africa. Landslides, v.9, pp.433–437.

    Article  Google Scholar 

  • Igwe, O. and Fukuoka, H. (2010) Environmental and socioeconomic impact of erosion in Nigeria, West Africa. Internat. Jour. Erosion Control Engg., v.3(1), pp.102–109.

    Article  Google Scholar 

  • Igwe, O., Fukuoka, H. and Sassa, K. (2012) The effect of relative density and confining stress on shear properties of sands with varying grading. Geotech Geol Eng. 30: 1207–1229.

    Google Scholar 

  • Igwe, O., Sassa, K. and Wang, F.W. (2007) The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests. Landslides, v.4(1), pp.43–51.

    Article  Google Scholar 

  • International Strategy For Disaster Reduction [ISDR] (2001) For the implementation of the international strategy for disaster reduction. June 2001. http://www.unisdr.org/

    Google Scholar 

  • International Strategy For Disaster Reduction [ISDR]) (2009) UNISDR terminology on disaster risk reduction. Published by United Nations International Strategy for Disaster Reduction (UNISDR) Geneva Switzerland.

    Google Scholar 

  • Iverson, R.M., Reid, M.E. and Lahusen, R.G. (1997) Debris-flow mobilization from landslides. Annual Rev. Earth Planet. Sci., v.25, pp.85–138.

    Article  Google Scholar 

  • Jakob, M., Holm, K., Lange, O. and Schwab, J.W. (2006) Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia. Landslides 3. doi:10.1007/s10346-006-0044-1

  • Jakob, M. and Hungr, O. (2005) Introduction. In: M. Jakob and O. Hungr (Eds.), Debris-flow hazards and related phenomena. Springer-Praxis, Chichester, pp.1–7.

  • Kogbe, C.A. (1989) Palaeogeographic History of Nigeria from Albian times. In: C.A. Kogbe (Ee.), Geology of Nigeria. Elizabethan Publ.Co. Lagos, pp.257–275

  • Ko Ko, C., Chowdhury, R. and Flentje, P. (2005) Hazard and risk assessment of rainfall—induced landsliding along a railway line. Quart. Jour. Engg. Geol. Hydrogeol., v.38, pp.197–213.

    Google Scholar 

  • Kotoky, P., Dutta, M.K., Goswami, R. and Borah, G.C. (2011) Geotechnical properties of the bank sediments along the Dhansiri River channel, Assam. Jour. Geol. Soc. India, v.78(2), pp.175–183

    Article  Google Scholar 

  • Luirei, K. and Bhakuni, S.S. (2009) Landslides along frontal part of eastern Himalaya in east Siang and lower Dibang districts, Arunachal Pradesh, India. Jour. Geol. Soc. India v.73(3), pp.442–443

    Article  Google Scholar 

  • Mukhlisin, M. and Taha, M.R. (2012) Numerical model of antecedent rainfall effect on slope stability at a hillslope of weathered granitic soil formation. Jour. Geol. Soc. India, v.79(5), pp.525–531

    Article  Google Scholar 

  • Naithani, A.K., Bhatt, A.K. and Murthy, K.S.K. (2009) Geological and geotechnical investigations of Loharinag-Pala Hydroelectric Project, Garhwal Himalaya, Uttarakhand. Jour. Geol. Soc. India, v.73(6), pp.821–836

    Article  Google Scholar 

  • Obi, G.C. and Okogbue, C.O. (2004) Sedimentary response to Tectonism in the Campanian-Maastrichian succession, Anambra Basin, Southeastern Nigeria. Jour. African Earth Sci., v.38, pp.99–108.

    Google Scholar 

  • Obi, G.C., Okogbue, C.O. and Nwajide, C.S. (2001) Evolution of the Enugu Cuesta: A tectonically Driven Erosional Process. Global Jour. Pure Appld. Sci., v.7, pp.321–330.

    Google Scholar 

  • Oboh-Ikuenobe, F.E., Obi, G.C. and Jamarillo, C.A. (2005) Lithofacies, palynofacies and sequence stratigraphy of paleogene strata in Southeastern Nigeria. Jour. African Earth Sci., v.41, pp.79–101.

    Article  Google Scholar 

  • Ojoh, K.A. (1992) Southern part of the Benue trough (Nigeria): Cretaceous stratigraphy, Basin-Analysis, Palaeo-oceanography and Geodynamic Evolution in the Equatorial Domain of the south Atlantic. National Assoc. Petrol. Explor. Bull., v.7, pp.131–152.

    Google Scholar 

  • Perucca, L.P., Yanina, M. and Angillieri, E. (2009) Evolution of a debris-rock slide causing a natural dam: the flash flood of Rý´o Santa Cruz, Province of San Juan—November 12, 2005. Natuarl Hazards, v.50, pp.305–320.

    Google Scholar 

  • Prasannakumar, V. and Vijith, H. (2012) Evaluation and validation of landslide spatial susceptibility in the Western Ghats of Kerala, through GIS-based Weights of Evidence model and Area Under Curve technique. Jour. Geol. Soc. India, v.80(4), pp.515–523.

    Article  Google Scholar 

  • Sajinkumar, K.S., Anbazhagan, S., Pradeepkumar, A.P. and Rani, V.R. (2011) Weathering and landslide occurrences in parts of Western Ghats, Kerala. Jour. Geol. Soc. India, v.78(3), pp.249–257.

    Article  Google Scholar 

  • Sarkar, K. and Singh, T.N. (2010) Road cut stability analysis along NH-22 in Luhri area, Himanchal Pradesh. In: Zhao, Labiouse, Dudt and Mathie (Eds.), Rock Mechanics in Civil and Environmental Engineering. Taylor and Francis Publ., pp.659–662.

    Google Scholar 

  • Sarkar, K., Singh, T.N. and Verma, A.K. (2012) A numerical simulation of landslide-prone slope in Himalayan region- a case study, Internat. Jour. Arabian Geosci., v.5, pp.73–81, DOI:10.1007/s12517-010-0148-8.

    Google Scholar 

  • Sassa, K (1988) Geotechnical model for the motion of landslides. In: Proc. 5th Internat. Symp. on Landslides, “Landslides”, Balkema, Rotterdam, v.1, pp.37–56.

    Google Scholar 

  • Sassa, K., Takei, A. and Kobashi, S. (1980) Landslides triggered by vertical subsidences. In: Proc. Internat. Symp on Landslides. New Delhi, 7–11 April 1980, pp.49–54.

    Google Scholar 

  • Sassa, K., Wang, G. and Fukuoka, H. (2003) Performing undrained shear tests on saturated sands in a new intelligent-type of ring shear apparatus. Geotech. Test Jour., v.26(3), pp.257–265.

    Google Scholar 

  • Sassa, K., Wang, G., Fukuoka, H., Wang, F.W., Ochiai, T. and Sugiyama, Sekiguchi, T. (2004) Landslide risk evaluation and hazard mapping for rapid and long-travel landslides in urban development areas. Landslides v.1(3), pp.221–235

    Article  Google Scholar 

  • Selby, M.J. (1993) Hillslope materials and processes, 2nd edn. Oxford University Press, New York, 451p.

    Google Scholar 

  • Ingh, T.N., Patil, H., Jain, A. and Peddada, S.R. (2009) Risk analysis in landslide prone area near Agastymumi-A case study. Internat. Jour. Earth Sci. Engg., v.2(3), pp.173–179.

    Google Scholar 

  • Singh, C.D., Behera, K.K. and Rocky, W.S. (2011) Landslide susceptibility along NH-39 between Karong and Mao, Senapati district, Manipur. Jour. Geol. Soc. India, v.78(6), pp.559–570

    Article  Google Scholar 

  • Singh Y., Bhat, G.M., Sharma, V., Pandita, S.K. and Thakur, K.K. (2012) Reservoir induced landslide at Assar, J&K: A case study. Jour. Geol. Soc. India, v.80(3), pp.435–439.

    Article  Google Scholar 

  • Singh, A.K., Kainthola, A. and Singh, T.N. (2012) Prediction of Factor of Safety of a Slope with an Advanced Friction Model. International Journal of Rock Mechanics and Mining Sciences, 55:164–167.

    Article  Google Scholar 

  • Singh, T.N., Pradhan, S.P. and Vishal, V. (2013) Stability of slopes in a fire-prone mine in Jharia Coalfield, India. Arabian Jour. Geosci., v.6, pp.419–421. DOI 10.1007/s12517-011-0341-4

    Article  Google Scholar 

  • Skempton, A.W. (1964) Long-term stability of clay slopes. Geotechnique, v.14(2), pp.77–102.

    Article  Google Scholar 

  • Takahashi, T. (2001) Process of occurrence, flow and deposition of viscous debris flow. In: G. Seminara and P. Blondeaux (Eds.), River, coastal and estuarine morphodynamics. Springer, Berlin, pp 93–118.

    Google Scholar 

  • Terlien, M. (1998) The determination of statistical and, deterministic hydrological landslide-triggering thresholds. Environ. Geol., v.35(2-3), pp.124–130.

    Google Scholar 

  • Trivedi, R., Vishal, V., Pradhan, S.P., Singh, T.N. and Jhanwar, J.C. (2012) Slope stability analysis in limestone mines. Internat. Jour. Earth Sci. Engg., v.5(4), pp.759–766.

    Google Scholar 

  • Varnes, D.J. (1984) Landslide hazard zonation: a review of principles and practice. Commission on landslides of the IAEG, UNESCO, Paris. Natural Hazards 3.

    Google Scholar 

  • Vishal, V., Pradhan, S.P. and Singh, T.N. (2010) Instability Assessment of Mine slope- A finite element approach. Internat. Jour. Earth Sci. Engg., v.3, pp.11–23.

    Google Scholar 

  • Vishal, V., Das, R. and Singh, T.N. (2012) Investigating the frictional response of granite rock surface:An experimental Approach. Jour. Geol. Soc. India, v.80, pp.493–498.

    Article  Google Scholar 

  • Wieczorek, G.F. (1996) Landslides triggering mechanisms, In: Turner (Ed.), Landslides: Investigation and Mitigation, National Research Council, Transportation Research Board, Washington, pp.76–90.

    Google Scholar 

  • Zhang, L.L., Fredlund, D.G., Zhang, L.M. and Tang, W.H. (2004) Conditions under which soil suction can be maintained. Can, Geotech, Jour., v.41(4), pp.569–582.

    Article  Google Scholar 

  • Zhang, L.L., Zhang, L.M. and Tang, W.H. (2005) Rainfall-induced slope failure considering variability of soil properties. Geotechnique, v.55(2), pp.183–188.

    Article  Google Scholar 

  • Zhang, L.L., Zhang, J., Zhang, L.M. and Tang, W.H. (2011a) Stability analysis of rainfall-induced slope failures: a review. Geotech Engg. Proc. Inst. Civil Engg., v.164(5), pp.299–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ogbonnaya Igwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igwe, O. The mechanisms and geotechnical characteristics of slope failures at a mining district, southeast Nigeria. J Geol Soc India 85, 471–484 (2015). https://doi.org/10.1007/s12594-015-0239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0239-y

Keywords

Navigation