Skip to main content
Log in

Black shale in late Jurassic Jhuran Formation of Kutch: Possible indicator of oceanic anoxic event?

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This paper reports the results of sedimentary facies analysis and organic geochemical investigations of the middle Member of the Jurassic Jhuran Formation of Kutch which is conspicuous by the occurrence of organic-rich shales. Five lithofacies have been identified for lower part of the Middle Member, e.g. Facies A: Black shale, Facies B: Black shale with siltstone inter-bedding, Facies C: shale and siltstone alternations with minor sandstones, Facies D: siltstone-sandstone alternations and Facies E: plane laminated and hummocky cross-stratified sandstone. The average TOC content of the shales decreases from facies A (av. TOC- 3.4%), to facies D (av. 0.6%) through facies B (av. 1.75%) and facies C (av. 1.34%). The Facies E comprises dominantly of hummocky cross-stratified sandstones. The facies study indicates storm-influenced, shallow marine depositional conditions. Organic geochemical study of shale samples collected from several outcrops from Bhuj to Zara suggests a mixture of type III and type IV kerogen, supplied from higher plant sources. Although most organic matters are mildly matured (av. Tmax c. 427°C), some of the samples reflect overheating related to extrusion of Deccan basalt (av. Tmax c. 604°C). V, Ni, and Co concentrations are indicative of anoxic condition within the depositional settings. The Ni/Co ratio (av. 2.5) and V/(V+Ni) ratio (av. 0.82) as well as size of pyrite framboids (7 to 20 micron), advocates intermittent anoxic and sulfidic conditions in the depositional setting. Black shales within the Jhuran Formation possibly suggest intermittent anoxia related to late Jurassic Oceanic anoxic event (OAE). Detailed investigations are needed to explain the factors causing anoxia in shallow marine conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouelresh, M.O. and Slatt, R.M. (2012) Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bull., v.96, pp.1–22.

    Article  Google Scholar 

  • Ahmad, A.H.M., Bhat, G.M., Khan, A.F. and Saikia, C. (2006) Petrography, diagenesis, provenance and tectonic setting of sandstones of Upper Katrol Formation (Kimmeridgian), Nakhtarana area, Kachchh, Gujarat. Jour. Geol. Soc. India, v.67, pp.243–253.

    Google Scholar 

  • Aigner, T. and Reineck, H.E. (1982) Proximity trends in modern storm sands from the Helgoland Bight (North Sea) and their implication for basin analysis. Senkenbergiana Marit., v.14, pp.183–215.

    Google Scholar 

  • Arthur, M.A. and Sageman, B.B. (1994) Marine Black Shales: A Review of Depositional Mechanisms and Environments of Ancient Deposits. Annual Rev. Earth Planet. Sci., v.22, pp.499–552.

    Article  Google Scholar 

  • Arthur, M.A. and Sageman, B.B. (2005) Sea Level Control on Source Rock Development: Perspectives from the Holocene Black Sea, the mid–Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. In: N.B. Harris and B. Pradier, (Eds.), The Deposition of Organic Carbon–rich Sediments: Models, Mechanisms and Consequences, SEPM Special Publication, v.82, pp.35–59.

    Article  Google Scholar 

  • Banerjee, S. (2000) Climatic versus tectonic control on storm cyclicity in Mesoproterozoic Koldaha Shale, central India. Gondwana Res., v.3, pp.521–528.

    Article  Google Scholar 

  • Banerjee, S., Dutta, S., Paikaray, S. and Mann, U. (2006) Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). Jour. Earth System Sci., v.115, pp.37–48.

    Article  Google Scholar 

  • Bardhan, S., Shome, S., Bose, P.K. and Ghose, G. (1989) Faunal crisis and marine regression across the Jurassic-Cretaceous boundary in Kutch, India. Meso. Res., v.2, pp.1–10.

    Google Scholar 

  • Biswas, S. K. (1978) On the status of the Bhuj and Umia Series of Kutch. W. India. In: Proc. 7th Indian Colloq. Micropalaeont. Stratigraphy, Madras.

    Google Scholar 

  • Biswas, S.K. (1980) Mesozoic Rock–Stratigraphy of Kutch, Gujarat. Quart. Jour. Geol. Min. Met. Soc. India, v.49, pp.1–51.

    Google Scholar 

  • Biswas, S.K. (1981) Basin Framework, Palaeo–environment and Depositional history of the Mesozoic sediments of Kutch Basin,Western India. Quart. Jour. Geol. Min. Met. Soc. India, v.53, pp.56–85.

    Google Scholar 

  • Biswas, S.K. (1993) Geology of Kutch v. 1, Dehradun, KDM Institute of Petroleum Exploration.

    Google Scholar 

  • Biswas, S.K. (1977) Mesozoic rock–stratigraphy of Kutch. Quart. Jour. Geol. Min. Met. Soc. of India, v.49, pp.1–52.

    Google Scholar 

  • Bond, D.P.G. and Wignall, P.B. (2010) Pyrite framboid study of marine Permo-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Bull. Geol. Soc. Amer., v.122, pp.1265–1279.

    Article  Google Scholar 

  • Bose, P.K., Bardhan, S. and Ghosh, G. (1986) Facies mosaic in the Ghuneri Member (Jurassic) of the Bhuj Formation, western Kutch, India. Sed. Geol., v.46, pp.293–309.

    Article  Google Scholar 

  • Bose, P.K. and Das, N.G. (1986) A transgressive storm- and fairweather wave dominated shelf sequence Cretaceous-Nimar formation, Chakrud, M.P, India. Sediment. Geol., v.46, pp.147–167.

    Article  Google Scholar 

  • Brumsack, H. J. (2006) The trace metal content of recent organic carbon–rich sediments: Implications for Cretaceous black shale formation. Palaeogeol. Palaeoclimat. Palaeoeco., v.232, pp.344–361.

    Article  Google Scholar 

  • Chester, R. and Messiha-Hanna, R.G. (1970) Trace element partition patterns in North Atlantic deep-sea sediments. Geochim. Cosmochim. Acta, v. 34, pp.1121–1128.

    Article  Google Scholar 

  • Cohen, A.S., Coe, A.L. and Kemp, D.B. (2007) The late Paleocene–early Eocene and Toarcian (Early Jurassic) carbon-isotopeexcursions: A comparison of their timescales, associated environmental changes, causes and consequences. Geol. Soc. (London) Jour., v.164, pp.1093–1108.

    Article  Google Scholar 

  • Demaison, G.J. and Moore, G.T. (1980) Anoxic environments and oil source bed genesis. Org. Geochem., v.2, pp.9–31.

    Article  Google Scholar 

  • Desai, B.G., Patel, S.J., Shukla, R. and Surve, D. (2008) Analysis of Ichnoguilds and their Significance in Interpreting Ichnological Events: A Study from Jhuran Formation (Upper Jurassic), Western Kachchh, India. Jour. Geol. Soc. India, v.72, pp.458–466.

    Google Scholar 

  • Dott, R.H. and Bourgeois, J. (1982) Hummocky stratification: Significance of its variable bedding sequences. Geol. Soc. of Am. Bull., v.93, pp.663–680.

    Article  Google Scholar 

  • Duke, W.L. (1985) Hummocky cross–strati?cation, tropical hurricanes, and intense winter storms. Sedimentology, v.32, pp.167–194.

    Article  Google Scholar 

  • Dypvik, H. (1984) Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geol. Mag., v.121, pp.489–504.

    Article  Google Scholar 

  • Fernández-López, S.R. (2011) Taphonomic analysis and sequence stratigraphy of the Albarracinites beds (lower Bajocian, Iberian range, Spain). An example of shallow condensed section. Bull. de la Soc. Geol. de France, v.82, pp.405–415.

    Article  Google Scholar 

  • Galloway, W. E. and Hobday, D. K. (1983) Terrigenous clastic depositional systems-application to petroleum, coal, and uranium exploration: New York, Springer-Verlag, p. 423.

    Google Scholar 

  • Ghare, M.A. and Kulkarni, K.G. (1986) Jurassic ichnofauna of Kutch II: Wagad region. Biovigyanam, v.12, pp.44–62.

    Google Scholar 

  • Goldring, R. and Aigner, T. (1982) Scour and fill: the significance of event separation. In: G. Einsele and A Seilacher, (Eds.), Cyclic and Event Stratification, pp.354–362.

    Chapter  Google Scholar 

  • Hatch, J.R. and Leventhal, J.S. (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. In: P.A. Meyers, L.M. Pratt and B. Nagy (Eds.), Geochemistry of Metalliferous Black Shales. Chem. Geol., v.99, pp.65–82.

    Google Scholar 

  • Herbin J.P., Montadert L., Müller C., Gomez R., Thurow J. and Wiedmann, J. (1986) Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In: C.P. Summerhayes and N.J. Shackleton (Eds.), North Atlantic Palaeoceanography. Geol. Soc. Spec. Publ., v.21, Blackwell, Oxford, pp.389–422

    Article  Google Scholar 

  • Hesselbo, S.P., Grocke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Morgans Bell, H.S. and Green, O.R. (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, v.406, pp.392–395.

    Article  Google Scholar 

  • Hesselbo, S.P., Jenkyns, H.C., Durate, L.V. and Oliveira, L.C.V. (2007) Carbon isototpe record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett., v.253, pp.455–470.

    Article  Google Scholar 

  • Jacobs, L., Emerson, S. and Skei, J. (1985) Partitioning and transport of metals across the O2 /H2S interface in apermanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta, v.49, pp.1433–1444.

    Article  Google Scholar 

  • Johnson, H.D. and Baldwin, C.T. (1986). Shallow siliciclastic seas. In: H.G. Reading (Ed.), Sedimentary Environments and Facies. Blackwell Oxford, pp.229–282.

    Google Scholar 

  • Jones, B. and Manning, D.A.C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., v.111, pp.111–129.

    Article  Google Scholar 

  • Jones, C.E. and Jenkyns, H.C. (2001) Seawater strontium isotopes, oceanic anoxic events and seafloor hydrothermal activity in the Jurassic and Cretaceous. Amer. Jour. Sci., v.111, pp.112–149.

    Article  Google Scholar 

  • Krishna, J., Pathak, D.B. and Pandey, B. (1998) Development of Oxfordian (Early Upper Jurassic) in the most proximal exposed part of Kachchh basin at Wagad outside the Mainland Kachchh. Jour. Geol. Soc. India, v.52, pp.513–522.

    Google Scholar 

  • Krishna, J., Pathak, D.B., Pandey, B. and Ojha J. R. (2000) Transgressive sediment intervals in the Late Jurassic of Kachchh, India. GeoRes. For., v.6, pp.331–332.

    Google Scholar 

  • Krishnan, M.S. (1956) Geology of India and Burma. Higginbothams (pvt.) ltd., Madras, India, 555p.

    Google Scholar 

  • Lafargue, E., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Oil Gas Sci. Technol., v.53, pp.421–437.

    Article  Google Scholar 

  • Leckie, D.A. (1986) Rates, controls and sand-body geometries of transgressive-regressive cycles: Cretaceous Moosebar and Gates formations, British Columbia: Amer. Assoc. Petrol. Geol., v.70, pp.516–535.

    Google Scholar 

  • Leckie, D.A. and Reinson, G.E. (1993) Effects of Middle to Late Albian sea-level fluctuations in the Cretaceous Interior Seaway, western Canada. In: W.G.E. Caldwell and E.G. Kauffman, (Eds.), Evolution of the Western Interior Basin. Geol. Assoc. Canada, Spec. Paper, v.39, pp.151–176.

    Google Scholar 

  • Leckie, D.A. Andwalker, R.G. (1982) Storm and tide–dominated shorelines in Cretaceous Moosebar–Lower Gates interval–Outcrop equivalents of deep basin gas trap in Western Canada. Bull. Amer. Assoc. Pet. Geol., v.66, pp.138–157.

    Google Scholar 

  • Leithold, E.L. and Bourgeois, J. (1984) Characteristics of coarsegrained sequences deposited in nearshore, wave-dominated environments: examples from the Miocene of southwest Oregon. Sedimentology, v.31, pp.749–775.

    Article  Google Scholar 

  • Liao, W., Wang, Y., Kershaw, S., Weng, Z. and Yang, H. (2010) Shallow marine dysoxia across the Permian-Triassic boundary: evidence from pyrite framboids in the microbialite in South China. Sed. Geol., v.232, pp.77–83.

    Article  Google Scholar 

  • Nozaki, T., Kato, Y. and Suzuki, K. (2013) Late Jurassic ocean anoxic event: Evidence from voluminous sulphide deposition and preservation in the Panthalassa. Scientific Reports, v.3, Article number 1889.

    Article  Google Scholar 

  • Padden M., Weissert H. and Derafelis M. (2001) Evidence for Late Jurassic release of methane from gas hydrate. Geology, v.29, pp.223–226.

    Article  Google Scholar 

  • Paulmier, A. and Ruiz-Pino, D. (2009) Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanogr., v.80, pp.113–128.

    Article  Google Scholar 

  • Pearce, J. (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, v.100, pp.14–48.

    Article  Google Scholar 

  • Pearce, C. R., Cohen, A. S., Coe, A.L. and Burton, K.W. (2008). Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, v.36, pp.231–234.

    Article  Google Scholar 

  • Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., v.70, pp.318–329.

    Google Scholar 

  • Peters, K.E. and Moldowan, J.M. (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments: Englewood Cliffs, Prentice Hall, 363p.

    Google Scholar 

  • Plint, A.G. (1984) A regressive coastal sequence from the Upper Eocene of Hampshire, southern England. Sediment., v.31, pp. 213–255.

    Article  Google Scholar 

  • Rajnath (1932) A contribution to the stratigraphy of Cutch. Quart. Jour. Geol. Min. Met. Soc. India, v.4, pp.161–174.

    Google Scholar 

  • Reading, H. (1978). Sedimentary Environments, Facies and Stratigraphy (Eds.). First ed., Blackwell Scientific Publications, Oxford, 557p.

    Google Scholar 

  • Reading, H. (1996) Sedimentary Environments: Processes, Facies and Stratigraphy (Eds). Third ed., Blackwell Science, Boston, p.688.

    Google Scholar 

  • Reinson, G.E. (1992) Transgressive barrier island and estuarine systems. In: R.G. Walker and N.P. James (Eds.), Facies Models, Response to Sea Level Change. Geol. Assoc. Canada, Toronto, ON, pp.179–194.

    Google Scholar 

  • Sarkar, S., Chakraborty, S., Banerjee, S. and Bose, P.K. (2002a) Facies sequence and cryptic imprint of sag tectnics in the late Proterozoic Sirbu Shale, Central India. Spec. Publs Internat. Assoc. Sediment, v.33, pp.369–381.

    Google Scholar 

  • Sarkar, S., Banerjee, S., Chakraborty, S. and Bose, P.K. (2002b) Shelf storm flow dynamics: insight from the Mesoproterozoic Rampur Shale, central India. Sediment. Geol., v.147, pp.89–104.

    Article  Google Scholar 

  • Satpathy, K.K., Panaigrahi, S., Mohanty, A.K., Sahu, G., Achary, M.S., Bramha, S.N., Padhi, R.K., Samantara, M.K., Selvanayagam, M. and Sarkar, S.K. (2013) Severe oxygen depletion in the shallow regions of the Bay of Bengal off Tamil Nadu Coast. Curr. Sci., v.104, pp.1467–1469.

    Google Scholar 

  • Schieber, J. (1995) Sedimentary expression and stratigraphic significance of erosion surfaces, condensation horizons, and hiatuses in the Chattanooga Shale of central Tennessee. GSA Abstr. w. Progr., v.27/6, p.A–400.

    Google Scholar 

  • Schieber, J. (1998) Developing a sequence stratigraphic framework for the Late Devonian Chattanooga shale of the southeastern US: relevance for the Bakken Shale. In: J.E. Christopher, C.F. Gilboy, D.F. Paterson and S.L. Bend (Eds.), Eight International Williston Basin Symposium, Saskatchewan Geol. Soc. Spec. Publ. v.13, pp.58–68.

    Google Scholar 

  • Schlanger, S.O. and Jenkyns, H.C. (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie enMijnbouw, v.55, pp.179–184.

    Google Scholar 

  • Seth, A., Sarkar, S. and Bose, P.K. (1990) Synsedimentary seismic activity in an immature passive margin basin (Lower Member of the Katrol Formation, Upper Jurassic, Kutch, India). Sediment. Geol., v.68, pp.279–291.

    Article  Google Scholar 

  • Suter, J.R. (2006) Facies models revisited: clastic shelves, In: H.W. Posamentier and R.G. Walker (Eds.), Facies models revisited: SEPM Special Publication, v. 84, pp.339–397.

    Article  Google Scholar 

  • Theede, H. (1973) Influence of oxygen deficiency and H2S on marine invertebrates. Neth. Jour. Sea Res., v.7, pp.244–252.

    Article  Google Scholar 

  • Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. and Perezcruz, C. (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview. In: G. Einsele, A. Ricken and W. Seilacher (Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, pp.617–659.

    Google Scholar 

  • Vail, P.R., Mitchum Jr., R.M. and Thompson, S. (1977) Seismic Stratigraphy and global changes of sea level. Part 3: relative changes of sea level from Coastal onlap. In: C.E. Payton (Eds.), Seismic Stratigraphy–Applications to Hydrocarbon Exploration, Am. Ass. Pet. Geol. Mem., v. 26, pp.63–81.

    Google Scholar 

  • Waagen, W. (1875) Jurassic Fauna of Cutch. Pal. Indica. Geol. Surv. India, Memoir, v.9, p.247.

    Google Scholar 

  • Walker, R.G. (1984) Facies Models. Geoscience Canada Reprint Series, Geol. Soc. Canada, Waterloo, Ontario, p.317.

    Google Scholar 

  • Weissert, H. and Erba, E. (2004) Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Jour. Geol. Soc. London., v.161, pp.695–702.

    Google Scholar 

  • Wignall, P.B. (1991) Model for transgressive black shales? Geology, v.19, pp.167–170.

    Article  Google Scholar 

  • Wignall, P.B. (1994) Black Shales. Geology and Geophysics Monographs, Oxford Univ. Press, v.30, pp.130.

    Google Scholar 

  • Wignall, P.B. and Myers, K.J. (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, v.16, pp.452–455.

    Article  Google Scholar 

  • Wignall, P.B. Newton, R. and Brookfield, M.E. (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeo. Palaeoclim. Palaeoeco., v.216, pp.183–188.

    Article  Google Scholar 

  • Wilkin, R.T., Arthur, M.A. and Dean, W.E. (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distribution Earth Planet Sc Lett, v.148, pp.517–525.

    Google Scholar 

  • Woodrow, D.L. (1985) Paleogeography, paleoclimate, and sedimentary processes of the Late Devonian Catskill Delta. In: D.L. Woodrow and W.D. Sevon, (Eds.), the Catskill Delta. Special Paper 201, Geol. Soc. Amer., pp.51–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A., Banerjee, S. & Dutta, S. Black shale in late Jurassic Jhuran Formation of Kutch: Possible indicator of oceanic anoxic event?. J Geol Soc India 85, 265–278 (2015). https://doi.org/10.1007/s12594-015-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-015-0215-6

Keywords

Navigation