Skip to main content
Log in

Carbonate diagenesis of the upper Jurassic successions in the west of Binalud — Eastern Alborz (NE Iran)

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The upper Jurassic carbonate settings in Iran are widely exposed in north and northeastern parts. Five stratigraphic columns were selected in the north eastern Iran. Their thickness ranges from 330 to 500 m. The various diagenetic processes identified include, micritization, cementation, compaction (physical and chemical), dissolution, neomorphism, pyritization, hematitization, silicification and dolomitization, which affected these carbonates. Elemental and stable isotopes analysis indicated that these deposits have undergone both meteoric and burial diagenesis in a relatively open system with moderate water-rock interaction. The positive trend between trace elements and oxygen isotope depletion also support these burial conditions. Lighter δl8O values of the dolomite samples may be related to an increase in temperature during the burial, which correspond to coarser euhedral crystals. Relatively higher δ18O values in finer dolomite crystals indicate their formation at lower burial depths relative to coarser crystals. Petrographic evidences such as coarse euhedral crystals with bright and dull zonation prove this interpretation. Chert nodules also have lighter 18O values relative to carbonate host rock, thus indicating the influence of burial diagenetic processes in their formation. The average environmental palaeotemperature was estimated to be 26°C on the basis of oxygen isotope values of less altered lime-mudstones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adabi, M.H. and Asadi-Mehmandosti, E. (2008) Microfacies and geochemistry of the Ilam Formation in the Tange-E Rashid area, Izeh, S.W. Iran. Jour. Asian Earth Sci, v.33, pp.267–277.

    Article  Google Scholar 

  • Adabi, M.H., Salehi, M.A. and Ghabeishavi, A. (2010) Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Jour. Asian Earth Sci, v.39, pp.148–160.

    Article  Google Scholar 

  • Ahmad, A.H.M. and Bhat, G.M. (2006) Petrofacies, provenance and diagenesis of the Dhosa Sandstone Member (Chari Formation) at Ler, Khachchh sub-basin, western India. Jour. Asian Earth Sci. v.27, pp.857–872.

    Article  Google Scholar 

  • Al-Aasm, I.S. and Veizer, J. (1986) Diagenetic stabilization of aragonite and low-Mg calcite, II. Stable isotopes in rudists. Jour. Sediment. Petrol., v.56, pp.620–624.

    Google Scholar 

  • Alavi, M. (1991). Sedimentary and structural characteristic of the paleo-Tethys remnants in north eastern Iran. Geol. Surv. Amer. Bull., v.103, pp.983–992.

    Article  Google Scholar 

  • Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M. (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Jour. Struct. Geol., v.25, pp.659–672.

    Article  Google Scholar 

  • Anderson, T.F. and Arthur, M.A. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer and L. Land (Eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course Notes, v.1, pp.1–151.

    Google Scholar 

  • Armstrong-altrin, J.S., Lee, Y.I., Verma, S.P. and Worden, R.H. (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: implications for paleoenvironment and diagenesis. Chemie der Erde-Geochemistry, v.69, pp.45–60.

    Article  Google Scholar 

  • Banerjee, S., Bhattacharya, S.K. and Sarkar, S. (2005) Facies, dissolution seams and stable isotope compositions of the Rohtas Limestone (Vindhyan Supergroup) in the Son valley area, central India. Jour. Earth Sys. Sci., v.114(1), pp.87–96.

    Article  Google Scholar 

  • Banerjee, S., Jeevankumar, S., Sanyal, P. and Bhattacharya, S.K. (2006a) Stable isotope ratios and nodular limestone of the proterozoic rohtas, limestone: Vindhyan basin, India. Carbonates and Evaporites, v.21, pp.133–143.

    Article  Google Scholar 

  • Banerjee, S., Bhattacharya, S.K. and Sarkar, S. (2006b) Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India. Jour. Earth System Sci., v.115, No. 1, pp.113–134.

    Article  Google Scholar 

  • Banerjee, S., Bhattacharya, S.K. and Sarkar, S. (2007) Carbon and oxygen isotopic variations in peritidal stromatolite cycles, Paleoproterozoic Kajrahat Limestone, Vindhyan basin of central India. Jour. Asian Earth Sci., v.29, pp.823–831.

    Article  Google Scholar 

  • Barskov, I.S. and Kiyashko, S. I. (2000) Thermal regime variations in the Jurassic marine basin of the East European Platform at the Callovian/Oxfordian boundary: Evidence from stable isotopes in belemnite rostra. Doklady Earth Sci., v.372, pp.643–645.

    Google Scholar 

  • Bartolini, A., Pittet, B., Mattioli, E. and Hunziker, J.C. (2003) Shallow-platform palaeoenvironmental conditions recorded in deep-shelf sediments: C and O stable isotopes in Upper Jurassic sections of southern Germany (Oxfordian-Kimmeridgian), Sediment. Geol., v.__, pp.107–130.

    Google Scholar 

  • Boggs, S. Jr. and Krinsley, D. (2006) Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, 177p.

    Book  Google Scholar 

  • Bone, Y., James, N.P. and Kyser, T.K. (1992) Synsedimentary detrital dolomite in Quaternary cool water carbonate sediments, Lacepede shelf, South Australia. Geology, v.20, pp.109–112.

    Article  Google Scholar 

  • Brand, U. and Veizer, J. (1980) Chemical diagenesis of the multi component carbonate system-1: trace elements. Jour. Sediment. Petrol., v.50, pp.1219–1236.

    Google Scholar 

  • Brunet, M.F., Korotaev, M.V., Ershov, A.V. and Nikishin, A.M. (2003) The South Caspian Basin: a review of its evolution from subsidence modelling, Sediment. Geol., v.156, pp.119–148.

    Article  Google Scholar 

  • Bruyat, J.P.B., Lecuyer, C. and Martineau, J.M. (2005) Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians, Palaeogeo. Palaeoclimat. Palaeoeco., v.216, pp.359–375.

    Article  Google Scholar 

  • Budd, D.A. (1997) Cenozoic dolomites of carbonate Island: their attributes and origin, Jour. Earth Sci. Rev., v.42, pp.1–47.

    Article  Google Scholar 

  • Carols, L.J. (2002). Diagenetic history of the Upper Jurassic Smackover Formation and its effects on reservoir properties: Vocation Field, Manila Sub-Basin, Eastern Gulf Coastal Plain. Gulf Coast Assoc. Geol. Soc. Trans., v.52, pp.631–644.

    Google Scholar 

  • Choquette, P.W. and James, N.P. (1990) Limestones-The burial diagenetic environment. In: I.A. McIlreath and D.W. Morrow (Eds.), Diagenesis. Geoscience Canada Reprint Series, v.4, pp.75–111.

    Google Scholar 

  • Choquette, P.W. and Hiatt, E.E. (2008) Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology, v.55, pp.423–460.

    Article  Google Scholar 

  • Coimbra, R. Immenhauser, A. and Oloriz, F. (2009) Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain). Sediment. Geol., v.219, pp.332–348.

    Article  Google Scholar 

  • Corbin, J.C., Person, A., Iatzoura, A., Ferre, B. and Renard, M. (2000) Manganese in Pelagic carbonates: indication of major Tectonic events during the geodynamic evolution of a passive continental margin (the Jurassic European Margin of the Tethys-Ligurian Sea). Palaeogeo. Palaeoclimat. Palaeoeco., v.156, pp.123–138.

    Article  Google Scholar 

  • Dickens, G.R. and Owen, R.M. (1993) Global change and manganese deposition at the Cenomanian-Turonian boundary, Mar. Georesources Geotechnol, v.11, pp.27–43.

    Article  Google Scholar 

  • Dickson, J.A.D. (1966) Carbonate identification and genesis as revealed by staining. Jour. Sediment. Petrol., v.36, pp.441–505.

    Google Scholar 

  • Ehrenberg, S.N., Pickard, N.A.H., Svana, T.A. and Oxtoby, N.H. (2002) Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark carbonate platform, Brents Sea. Jour. Sediment. Res., v.72, pp.95–115.

    Article  Google Scholar 

  • El-saiy, A.K. and Jordan, B.R. (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. Jour. Asian Earth Sci., v.31, pp.35–43.

    Article  Google Scholar 

  • Emmanuel, L. and Renard, M. (1993) Carbonate Geochemistry (Mn, 13C and 18O of the late Tithonian-Berriasian pelagic limestones of the vocontian trough (SE France). Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine, v.17, pp.205–221.

    Google Scholar 

  • Esteban, M. and Taberner, C. (2003). Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. Jour. Geochemical Explor., v.78–79, pp.355–335.

    Article  Google Scholar 

  • Ferry, S., Pellenard, P., Collin, P.Y., Thierry, J., Marchand, D., Deconinck, J.F., Robin, C., Carpentier, C., Durlet, C. and Curial, A. (2007) Synthesis of recent stratigraphic data on Bathonian to Oxfordian deposits of the eastern Paris Basin. Mem. de la Societe Geologique de France, v.178, pp.37–57.

    Google Scholar 

  • Flugel, F., (2010) Microfacies of carbonate rocks—analysis, interpretation and application. Springer, Berlin, 967p.

    Book  Google Scholar 

  • Fouke, B.W., Zerkle, A.L., Alvarez, W., Pope, K.O., Ocampos, A.G., Wachtman, R.J., Nishimura, J.M.G., Claeys, P. and Fischer, A.G. (2002) Cathodoluminescence petrography and isotope geochemistry of KT impact eject deposited 360 km from the Chicxulub Cracter, at Albion Island, Belize. Sediment. Geol., v.49, pp.117–138.

    Article  Google Scholar 

  • Fursich, F.T., Wilmsen, M. Seyed-emami, K., Cecca, F. and Majidifard, M.R. (2005) The upper Shemshak Formation (Toarcian-Aalenian) of the Eastern Alborz (Iran): biota and palaeoenvironments during a transgressive-regressive cycle, Facies, v.51, pp.365–384.

    Article  Google Scholar 

  • Fursich, F.T., Wilmsen, M. Seyed-emami, K. and Majidifard, M.R. (2009) The Mid-Cimmerian tectonic event (Bajocian) in the Alborz Mountains, northern Iran: evidence of the break-up unconformity of the South Caspian Basin. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran basins. Geol. Soc. London Spec. Publ., v.312, pp.189–203.

    Google Scholar 

  • Gao, G. and Land, L.S. (1991) Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study. Sedimentology, v.38, pp.857–870.

    Article  Google Scholar 

  • Goldhaber, M.B. (2004) Sulfur-rich sediments In: F.T. Machenzie (Ed.), Sediments, diagenesis and sedimentary rocks, treatise on geochemistry, Elsevier Amesterdam, pp.257–288.

    Google Scholar 

  • Habicht, J.K.A. (1979) Paleoclimate, Paleomagnetism, and Continental Drift, AAPG Studies in Geology, v.9.

  • Hesse, R. (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci. Rev., v.26, pp.253–284.

    Article  Google Scholar 

  • Jadoul, F. and Galli, M.T. (2008) The Hettangian shallow water carbonates after the Triassic Jurassic biocalcification crisis: the Albenza Formation in Western Southern Alps. Riv. Italian Paleontology Stratigraphy, v.114, pp.453–470.

    Google Scholar 

  • James, N.P. and Choquette, P.W. (1983) Diagenesis 6. Limestonethe sea floor diagenetic environment. Geosci. Canada, v.10, pp.162–179.

    Google Scholar 

  • James, N.P. and Choquette, P.W. (1990) Limestones-The meteoric diagenetic environment. In: I.A. McIlreath and D.W. Morrow (EDs.), Diagenesis, Geoscience Canada Reprint Series, v.4, pp.35–73.

    Google Scholar 

  • Jarvis, J., Murphy, A.M. and Gale, A.S. (2001) Geochemistry of pelagic and hemipelagic carbonates: criteria for identiying systems tracts and sea level change, Jour. Geol. Soc. London, v.158, pp.685–696.

    Article  Google Scholar 

  • Jenkins, H.C., Jones, C.E. Grocke, D.R. Hesselbo, S.P. and Parkinson, D.N. (2002) Chemostratigraphy of the Jurassic system: applications, limitations and implications for palaeoceanography. Jour. Geol. Soc. London, v.159, pp.347–350.

    Article  Google Scholar 

  • Johnson, A.W., Shelton, K.L., Greeg, M.J., Somerville, I.D., Wright, W.R. and Nagy, Z.R. (2009) Regional studies of dolomites and their included fluids: recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field. Mineral. Petrol., v.96, pp.1–18.

    Article  Google Scholar 

  • Jones, C.E. and Jenkyns, H.C. (2001) Sea water strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Amer. Jour. Sci., v.301, pp.112–149.

    Article  Google Scholar 

  • Jones, B. (2007) Inside-out dolomite, Jour. Sediment. Res., v.77, pp.539–551.

    Article  Google Scholar 

  • Katz, M.E., Wright, D.J., Miller, G.K., Cramer, S.B., Fennl, K. and Falkowski, G.P. (2005) Biological overprint of the geological carbon cycle. Marine Geol., v.217, pp.323–338.

    Article  Google Scholar 

  • Kavoosi, M.A., Lasemi, Y., Sherkati, S. and Moussavi-harami, R. (2009) Facies analysis and depositional sequences of the Upper Jurassic Mozduran Formation, a carbonate reservoir in the Kopet Dagh Basin, NE IRAN, Journal of Petroleum Geology, v.32, pp.235–260.

    Article  Google Scholar 

  • Land, L.S. (1992) The dolomite problem: stable and radiogenic isotope clues. In: N. Clauer and S. Chaudhuri (Eds.), Isotopic Signatures and Sedimentary Records. Lecture Notes in Earth Sciences, 43, Springer-Verlag, Berlin, pp.49–68.

    Chapter  Google Scholar 

  • Le’cuyer, C., Boggey, C., Garcoa, J.P., Gramdkean, P., Barrat, J.A., Floquet, M. and Bardet, N. (2003) Pereda-Superbiola, X., Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Lano): did the environmental record survive? Palaeogeo. Palaeoclimat. Palaeoeco., v.193, pp.457–471.

    Article  Google Scholar 

  • Machel, H.G. (2000) Application of cathodoluminescence to carbonate diagenesis. In: M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter (Eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp.271–301.

    Chapter  Google Scholar 

  • Mahboubi, A., Moussavi-Harami, R., Aghaee, A. and Aletaha, H. (2006) Sequence stratigraphy and palaeogeography of the Upper Jurassic reservoir equivalent along the outcrop belt in the Agh-Darband area, northeastern Iran. The 6th international conference on the geology of the middle east, Al-Ain, UAE, v.104, pp.20–23.

    Google Scholar 

  • Mahboubi, A., Moussavi-harami, R., Carpenter, S.J., Aghaee, A. and Collins, L.B. (2010) Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic-carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran. Carbonates Evaporites, v.25, pp.231–246.

    Article  Google Scholar 

  • Marshall, J.D. and Ashton, M. (1980) Isotopic and trace element evidence for submarine lithification of hardground in Jurassic of England. Sedimentology, v.27, pp.271–289.

    Article  Google Scholar 

  • Marshall, J.D. (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston, 146p.

    Google Scholar 

  • Marshall, J.D. (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geology Magazine, v.129, pp.143–160.

    Article  Google Scholar 

  • Milliman, J.D. (1974) Marine Carbonates, Springer-Verlag, New York, 375p.

    Google Scholar 

  • Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates, Development in Sedimentology, 48, 707p.

  • Nader, F.H., Swennen, R. and Keppens, E. (2008) Calcitization/dedolomitization of Jurassic dolostones (Lebanon): results from petrographic and sequential geochemical analyses. Sedimentology, v.55, pp.1467–1485.

    Article  Google Scholar 

  • Nicolaides, S. (1997) Marine-derived dolomite in the shallowly buried temperate Port Campbell Limestone (Miocene), Otway Basin, Australia. Sedimentology, v.44, pp.143–157.

    Article  Google Scholar 

  • Paris, G., Bartolini, A., Donnadieu, Y., Beaumont, V. and Gaillardet, J. (2010) Investigating boron isotopes in a middle Jurassic micritic sequence: Primary vs. diagenetic signal. Chemical Geol., v.275, pp.117–126.

    Article  Google Scholar 

  • Pope, M.C. (2004) Cherty carbonate facies of the Montoya Group, southern New Mexico and western Texas and its regional correlatives: a record of Late Ordovician paleoceanography on southern Laurentia. Palaeogeo. Palaeoclimat. Palaeoeco., v.210, pp.367–384.

    Article  Google Scholar 

  • Price, G.D. and Sellwood, B.W. (1994) Palaeotemperature indicated by Upper Jurassic (Kimmeridgian-Tithonian) fossils from Mallorca determined by oxygen isotope composition. Palaeogeo. Palaeoclimat. Palaeoeco., v.110, pp.1–10.

    Article  Google Scholar 

  • Rao, C. P. (1990) Geochemical characteristics of cool-temperate carbonates, Tasmania, Australia. Carbonates and Evaporites, v.5, pp.209–221.

    Article  Google Scholar 

  • Rao, C.P. (1996) Modern Carbonates, Tropical, Temperate, Polar: Introduction to Sedimentology and Geochemistry. Art of Tasmania, Tasmania, 206 p.

    Google Scholar 

  • Ray, J.S., Veizer, J. and Davis, W. J. (2003) C, 0, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlation and implications for global events. Precambrian Res., v. 121, pp.103–140.

    Article  Google Scholar 

  • Reid, R.P. and Macintyer, I.G. (2000) Microboring versus recrystallization: further insight into the micritization process. Jour. Sediment. Res., v.70, pp.24–28.

    Article  Google Scholar 

  • Reinhold, C. (1998) Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sediment. Geol., v.121, pp.71–95.

    Article  Google Scholar 

  • Ronchi, P., Jadoul, F., Ceriani, A., Giulio, A.D., Scotti, P., Ortenzi, A. and Massara, E.P. (2011) Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy), Sedimentology, v.58, pp.532–565.

    Article  Google Scholar 

  • Sarkar, S, Chakraborty, P.P, Bhattacharya, S.K., and Banerjee, S. (1998) C12 Enrichment along intraformational unconformities within Proterozoic Brander limestone, Son Valley, India and its implication., Carbonates & Evaporites, v.13, pp.108–114.

    Article  Google Scholar 

  • Savard, M.M., Veizer, J. and Hinton, R. (1995) Cathodoluminescence at low Fe and Mn concentrations: a SIMS study of zones in natural calcites. Jour. Sediment. Res., v.65, pp.208–213.

    Article  Google Scholar 

  • Schoonen, M.A.A. (2004) Mechanisms of sedimentary pyrite formation. In: J.P. Amend, K.J. Edwards and T.A.W. Lyon (Eds.), Sulfur Biochemistry: Past and Present, Special Paper 379, Geol. Soc. Amer., Boulder, pp.117–134.

    Google Scholar 

  • Schulke, I. and Popp, A. (2005) Microfacies development, sea level change and conodont stratigraphy of Famennian mid to deep platform deposits of the Brighauser tunnel section (Rheinisches Schiefergebirge, Germany), Facies, v.50, pp.647–664.

    Article  Google Scholar 

  • Shabanian, E., Bellier, O., Abbasso, M.R., Siame, L. and Farbod, Y. (2010) Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges, Tectonophysics, v.480, pp.280–304.

    Article  Google Scholar 

  • Sibley, D.F. and Greg, J.M. (1987) Classiffication of dolomite rock textures. Jour. Sediment. Petrol., v.57, pp.967–975.

    Google Scholar 

  • Steuber, T. and Veizer, J. (2002) Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, v.30(12), pp.1123.

    Article  Google Scholar 

  • Teedumae, A., Shogenova, A. and Kalastte, T. (2006) Dolomitization and sedimentary cyclicity off tthe Ordovician, Silurian, and Devonian rocks in South Estonia, Proc. Estonian Acad. Sci., Geology, v.55, pp.67–87.

    Google Scholar 

  • Touir, J., Soussi, M. and Troudi, H. (2009) Polyphased dolomitization of a shoal-rimmed carbonate platform: example from the Middle Turonian Bireno dolomites of central Tunisia. Cretaceous Res., v.30, pp.785–804.

    Article  Google Scholar 

  • Tucker, M.E. and Wright, V. P. (1990) Carbonate sedimentology. Blackwell, Oxford, 482pp.

    Book  Google Scholar 

  • Tucker, M.E. (1991) Sequence stratigraphy of carbonate-evaporite basins: models and applications to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Jour. Geol. Soc. London, v.148, pp.1019–1036.

    Article  Google Scholar 

  • Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K. and Roure, F. (2006) Development of secondary porosity in the Fairholme carbonate complex (southwest Alberta, Canada), Jour. Geochem. Explor., v.89. pp.394–397.

    Article  Google Scholar 

  • Veizer, J. and Hoefs, J. (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks, Geochim. Cosmochim. Acta, v.40, pp.1387–1395.

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden Giles, A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H. (1999) (super 87) Sr/(super 86) Sr, delta (super 13) C and delta (super 18) O evolution of Phanerozoic seawater. In: J. Veizer (Ed.), Earth System Evolution; Geochemical Perspective. Chemical Geol., v.161(1–3), pp.59–88.

    Google Scholar 

  • Vincent, B., Emmanuel, L., Houel, P. and Loreau, J.P. (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France), Sediment. Geol., v.197, pp.267–289.

    Article  Google Scholar 

  • Wallmann, K. (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate, Geochim. Cosmochim. Acta, v.65, pp.3005–3025.

    Article  Google Scholar 

  • Warren, J. (2000) Dolomite: occurrence, evolution and economically important associations, Earth Science Review, v.52, pp.1–81.

    Article  Google Scholar 

  • Weible, R. and Friis, H. (2004) Opaque minerals as keys for distinguishing oxidizing and reducing diagenetic conditions in the lower Triassic Bunter Sandstone, North German Basin. Sediment. Geol., v.169, pp.121–128.

    Article  Google Scholar 

  • Wierzbowski, H. (2004) Carbon and oxygen isotope composition of Oxfordian-Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas, Palaeogeo. Palaeoclimat. Palaeoeco., v.203, pp.153–168.

    Article  Google Scholar 

  • Winefield, P.R. Nelsion, C.S. and Hodder, A.P. W. (1996) Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites v.11, pp.19–31.

    Article  Google Scholar 

  • Zak, K., Kostak, M., Man, O., Zzkharov, A.V., Rogov, M.A., Pruner, P., Rohovec, J., Dzyuba, S.O. and Mazuch, M. (2011) Comparison of carbonate C and O stable isotope records across the Jurassic/Cretaceous boundary in the Tethyan and Boreal Realms, Palaeogeo. Palaeoclimat. Palaeoeco., v.299, pp. 83–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aghaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghaei, A., Mahboubi, A., Harami, R.M. et al. Carbonate diagenesis of the upper Jurassic successions in the west of Binalud — Eastern Alborz (NE Iran). J Geol Soc India 83, 311–328 (2014). https://doi.org/10.1007/s12594-014-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0044-z

Keywords

Navigation