Skip to main content
Log in

Geology and geochemistry of archaean felsic metavolcanic rocks of the Eastern Part of the Kolar greenstone belt, Dharwar craton, India: Implications for their petrogenesis and geodynamic setting

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

In the Kolar greenstone belt of the Dharwar craton, felsic metavolcanics are encountered prominently in its eastern region around Surapalli and Marikoppa. These felsic volcanic rocks are essentially homogeneous and their bulk mineralogy is almost the same. They consist of phenocrysts of quartz and feldspar, set in a fine-grained quartzo-feldspathic groundmass. They are calc-alkaline rhyolite in composition, and are characterized by high SiO2 (av. 75.74 wt.%), moderate Al2O3 (av. 11.84 wt.%), Na2O (av. 3.55 wt.%), K2O (av. 3.26 wt%) contents and low Mg# (av. 6.07), Cr (av. 8 ppm), Ni (av. 8 ppm), Sr (av. 331 ppm.), Y (av. 7 ppm), Yb (av. 0.87 ppm) and Nb/Ta (av. 6.40) values, suggesting Tonalite-Trondhjemite-Granodiorite (TTG) affinity for these felsic volcanics. They are strongly fractionated [(La/Yb)N− = 14.41–48.70] with strong LREE enrichment [(La/Sm)N = 2.50-3.59] and strong HREE depletion [(Gd/Yb)N = 1.34–2.77] with positive Eu anomaly. The regional geological set-up, petrographic and geochemical characteristics suggest that these felsic volcanics probably were derived by partial melting of a subducting basalt slab at shallow depth without much involvement of mantle wedge in an island arc geodynamic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anantha Iyer, G. and Vasudev, V.N. (1979) Geochemistry of Archaean metavolcanic rocks of Kolar and Hutti gold fields, Karnataka. Jour. Geol. Soc. India, v.20, pp.419–432.

    Google Scholar 

  • Anantha Iyer, G. and Vasudev, V.N. (1985) Copper metallogeny in the Jogimardi volcanics, Chitradurga greenstone belt. Jour. Geol. Soc. India, v.26, pp.580–598.

    Google Scholar 

  • Arth, J.G., Barker, F., Peterman, Z.E. and Friedman, J. (1978) Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalite and trondhjemitic magmas. Jour. Petrol., v.19, pp.289–316.

    Article  Google Scholar 

  • Balakrishnan, S., Hanson, G.N. and Rajamani, V. (1990) Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, South India. Contrib. Mineral. Petrol., v.107, pp.279–292.

    Article  Google Scholar 

  • Barker, F. (1979) Trondhjemites: definition, environment and hypothesis of origin. In: F. Barker (Ed.), Trondhjemites, Dacites and Related Rocks, Elsevier, New York, pp.1–12.

    Google Scholar 

  • Bhaskar Rao, Y.J. and Drury, S.A. (1982) Incompatible trace element geochemistry of Archaean metavolcanic rocks from the Bababudan volcanico-sedimentary belt, Karnataka. Jour. Geol. Soc. India, v.23, pp.1–12.

    Google Scholar 

  • Chadwick, B., Ramakrishnan, M., Vasudev, V.N. and Viswanatha, M.N. (1989) Facies distribution and structure of a Dharwar volcano-sedimentary basin: Evidence for late Archaean transpression in south India. Jour. Geol. Soc. London, v.146, pp.825–834.

    Article  Google Scholar 

  • Chardon, D., Peucat. J.J., Jayananda, M., Choukroune, P. and Fanning, C.M. (2002) Archaean granite greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics, v.21, pp.7-1–7-17.

    Article  Google Scholar 

  • Condie, K.C. (1981) Archaean greenstone belts. Developments in Precambrian Geology. Elsevier, v.3, 434p.

  • Condie, K.C. (1994) Greenstones through time. In: K.C. Condie (Ed.), Archaean Crustal Evolution. Elsevier, Amsterdam, pp.85–120.

    Chapter  Google Scholar 

  • Condie, K.C. (1997) Contrasting sources from upper and lower continental crust: The greenstone connection. Jour. Geol., v.105, pp.729–736.

    Article  Google Scholar 

  • Condie, K.C. (2004) Supercontinents and superplume events: Distinguishing signals in the geologic record. Phys. Earth Planet. Interiors, v.146, pp.319–332.

    Article  Google Scholar 

  • Defant, M.J. and Drummond, M.S. (1990) Derivation of some modern ore magmas by melting of young subducted lithosphere. Nature, v.347, pp.663–665.

    Article  Google Scholar 

  • Drummond, M.S. and Defant, M.J. (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. Jour. Geophys. Res., v.95, pp.21503–21521.

    Article  Google Scholar 

  • Drury, S.A. (1983) The petrogenesis and setting of Archaean metavolcanics from Karnataka State, South India. Geochim. Cosmochim. Acta., v.47, pp.317–329.

    Article  Google Scholar 

  • Edwards, G.R. and Hodder, R.W. (1991) A semi quantitative model for fractionation of rhyolite from rhyodacite in a compositionally altered Archaean volcanic complex, Superior Province, Canada. Precambrian Res., v50, pp.49–67.

    Article  Google Scholar 

  • Giritharan, T. S. and Rajamani, V. (1998) Geochemistry of the melavolcanics of the Hutti-Maski shist belt. South India: Implications to gold metallogeny in the eastern Dharwar Craton. Jour. Geol. Soc. India, v.51, pp.583–594.

    Google Scholar 

  • Glikson, A.Y. (1976) Trace element geochemistry and origin of early Precambrian acid igneous series. Barberton Mountain Land, Transvaal, Geochim. Cosmochim. Acta, v.40, pp.1261–1280.

    Article  Google Scholar 

  • Gutscher, M.A., Maury, R., Eissen, J. and Bourdon, E. (2000) can slab melting be caused by flat subduction? Geology, v.28, pp.535–538.

    Article  Google Scholar 

  • Hallberg, J.A. and Giles, C.W. (1986) Archaean felsic volcanism in the northern Yilgarn block, Western Australia. Australian Jour. Earth Sci., v.33, pp.413–427.

    Article  Google Scholar 

  • Hanson, G.N. (1980) Rare earth elements in petrogenetic studies of igneous rocks: Ann. Rev. Earth Planet. Sci., v.8, pp.371–406.

    Article  Google Scholar 

  • Hanuma Prasad, M., Krishna Rao, B., Vasudev, V.N., Srinivasan, R. and Balaram, V. (1997) Geochemistry of Archaean bimodal volcanic rocks of the Sandur supracrustal belt, Dharwar Craton, Southern India. Jour. Geol. Soc. India, v.49, pp.307–322.

    Google Scholar 

  • Hashigushi, H., Yamada, R. and Inoue, T. (1983) Fractional application of low Na2O anomalies in footwall acid lava for delimiting promising areas around the Kosaka and Fukazawa Kuroko deposits, Akita Prefectural, Japan. Econ. Geol. Monograph, v.5, pp.387–394.

    Google Scholar 

  • Huang, W.L. and Wyllie, P.J. (1986) Phase relationships of gabbro-tonalite-granite-water at 15kbar with application to differentiation and anatexis. Amer. Mineralogist, v.71, pp.301–306.

    Google Scholar 

  • Haskin, L.A., Frey, F.A., Schmitt, R.A. and Smith, R.H. (1966) Meteoric, solar terrestrial rare earth distributions. Physics and Chemistry of the Earth. (L.H. Ahrens), Pergamon Press, v.7, pp.169–321.

    Article  Google Scholar 

  • Jahn, B.M., Glikson, A.X., Peucat, J.J. and Hickman, A.H. (1981) REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara block, Western Australia: Implications for the early crystal evolution. Geochim. Cosmochim. Acta., v.45, pp.1633–1652.

    Article  Google Scholar 

  • Jahn, B., Auray, B., Shen, Q., Zhang., Dong, Y., Ye, X., Zhang, Q., Cornichet, J. and Mace, J. (1988) Archaean crustal evolution in China: The Taishan complex and evidence for juvenile crustal addition from long term depleted mantle. Precambrian Res., v.38, pp.381–403.

    Article  Google Scholar 

  • Jayananda, M., Chardon, D., Peucat, J.J., Capdevila, R. and Martin, H. (2006) 2.61 Ga potassic granites and crustal reworking, western Dharwar craton (India): tectonic, geochronologic and geochemical constraints. Precambrian Res., v.170, pp.1–26.

    Article  Google Scholar 

  • Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and Mcdonald, G.D. (2002) Fluid mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol., v.144, pp.38–56.

    Article  Google Scholar 

  • Krogstad, E.J, Balakrishnan, S., Mukhopadhyay, D.K., Rajamani, V. and Hanson, G.N. (1989) Plate tectonics 2.5 billion years ago; evidence at Kolar, south India: Science, v.243, pp.1337–1340.

    Google Scholar 

  • Krogstad, E.J., Hanson, G.N. and Rajamani, V. (1991) U-Pb Ages of zircon and sphene for two gneiss terrains adjacent to the Kolar Schist Belt, South India: Evidence for separate crustal evolution histories. Jour. Geol., v.99, pp.801–816.

    Article  Google Scholar 

  • Krogstad, E.J., Hanson, G.N. and Rajamani, V. (1995) Sources of continental magmatism adjacent to the Late Archaean Kolar Suture Zone, South India: distinct isotopic and elemental signatures of two late Archaean magmatic series. Contrib. Mineral. Petrol., v.122, pp.159–173.

    Article  Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streekeinsen, A. and Zanettin, B.E., (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jour. Petrol., v.27, pp.745–750.

    Article  Google Scholar 

  • Maniar, P.P. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Bull. Geol. Soc. Amer., v.101, pp.635–653.

    Article  Google Scholar 

  • Manikyamba, C. and Naqvi, S.M. (1997) Late Archaean mantle fertility: constraints from metavolcanics of the Sandur schist belt, India. Gondwana Res., v.1, pp.69–89.

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Naqvi, S.M. and Ram Mohan, M. (2004) Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar Craton. Precambrian Res., v.134, pp.21–39.

    Article  Google Scholar 

  • Manikyamba, C., Naqvi, S.M., Subbarao, D.V., Ram Mohan, M., Tarun Khanna, C., Rao, T.G. and Reddy, G.L.N. (2005) Boninites form the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India; implications for Archaean subduction processes. Earth Planet. Sci. Lett., v.230, pp.65–83.

    Article  Google Scholar 

  • Martin, H. (1987) Petrogenesis of Archaean trondhjemites, tonalities and granodiorites from eastern Finland: Major and trace element geochemistry. Jour. Petrol., v.28, pp.921–953.

    Article  Google Scholar 

  • Martin, H. (1993) The mechanism of petrogenesis of the Archaean continental crust-comparison with modern processes. Lithos, v.30, pp.373–388.

    Article  Google Scholar 

  • Martin, H. (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos, v.46, pp.411–429.

    Article  Google Scholar 

  • Martin, H. and Moyen, J.F. (2002) Secular chnages in tonalite trondhjemite granodiorite composition as markers of the progressive cooling of earth. Geology, v.30, pp.319–322.

    Article  Google Scholar 

  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005) An overview of adakite, tonalite trondhjemite granodiorite (TTG) and sanikotoid: relationships and some implications for crustal evolution. Lithos, v.79, pp.1–24.

    Article  Google Scholar 

  • Mishra, M. and Rajamani, V. (1999) Significance of the Archaean bimodal volcanics from the Ramagiri schist belt in the formation of eastern Dharwar craton. Jour. Geol. Soc. India, v.56, pp.563–583.

    Google Scholar 

  • Montanini, A., Babieri, M. and Castorina, F. (1994) The role of fractional crystallization, crustal melting and magma mixing in the petrogenesis of rhyolite and mafic inclusion bearing dacites from the Monte Arci volcanic complex (Sardinia, Italy). Jour. Volcanol. Geothermal Res., v.61, pp.95–120.

    Article  Google Scholar 

  • Mukhopadhyay, D.K. (1990) Deformational history of the Precambrian Kolar schist belt, South India: Constraints for the tectonic evolution. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.99, pp.201–213.

    Google Scholar 

  • Mukhopadhyay, D.K. and Haimanot, B.W. (1989) Geometric analysis and significance of mesoscopic shear zones in the Precambrian gneisses around the Kolar schist belt, South India. Jour. Struct. Geol., v.11, pp.569–581.

    Article  Google Scholar 

  • Naqvi, S.M. and Rana Prathap, J.G. (2007) Geochemistry of adakites from Neoarchaean active continental margin of Shimoga schist belt, western Dharwar craton, India: implications for the genesis of TTG. Recambrian Res., v.156, pp.32–54.

    Article  Google Scholar 

  • Naqvi, S.M., Khan, R.M.K., Manikyamba, C., Ram Mohan, M. and Khanna, T.C. (2006) Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi-Hungund greenstone belt of the eastern Dharwar craton (EDC): implications for the tectonic setting. Jour. Asian Earth Sci., v.27, pp.25–44.

    Article  Google Scholar 

  • Naqvi, S.M., Sarma, D.S., Sawkar, R.H., Ram Mohan M. and Rana Prathap, J.G. (2008) Role of adakitic magmatism and subduction in gold endowment of Dharwar Neoarchaean greenstone belts, India. Jour. Geol. Soc. India, v. 71, pp.875–888.

    Google Scholar 

  • Narayanaswami, S., Ziauddin, M. and Ramachandra Rao, A.V. (1960) Structural control and localization of gold bearing lodes, Kolar gold field, India. Econ. Geol., v.55, pp.1429–1459.

    Article  Google Scholar 

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Traceelement discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp.956–83.

    Article  Google Scholar 

  • Peucat, J.J., Mahabaleswar, B. and Jayananda, M. (1993) Age of younger tonalitic magmatism and granulite metamorphism in the amphibolite-granulite transition zone of southern India (Krishnagiri area): Comparison with older Peninsular gneisses of Gorur-Hassan area. Jour. Metamorp. Geol., v.11. pp. 879–888.

    Article  Google Scholar 

  • Rajamani, V., Shivakumar, K., Hanson, G.N. and Granath, J.W. (1981) Petrogenesis of amphibolites from the Kolar schist belt, India: a preliminary report. Jour. Geol. Soc. India, v22, pp.470–487.

    Google Scholar 

  • Rajamani, V., Shivakumar, K., Hanson, G.N. and Shirey, S.B. (1985) Geochemistry and petrogenesis of amphibolites, Kolar schist belt, South India: Evidence for komatiitic magma derived by low percentages of melting of the mantle: Jour. Petrol., v.26, pp.92–123.

    Article  Google Scholar 

  • Ramakrishnan, M. (2009) Precambrian mafic magmatism in the western Dharwar craton, southern India. Jour. Geol. Soc. India, v.73, pp.101–116.

    Article  Google Scholar 

  • Rapp, P.P. and Watson, E.B. (1995) Dehydration melting of metabasalt at 8-32kbar: implications to Archaean mafic magmatism. Jour. Geol. Soc. India, v.36, pp.891–931.

    Google Scholar 

  • Rapp, R.P., Shimizu, N., Morman, M.D. and Applegate, G.S. (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 Ga. Chemical Geol., v.160, pp.335–356.

    Article  Google Scholar 

  • Smeeth, W.F. (1916) Outline of the geological history of Mysore. Mysore Geol. Dept. Bull., No.6, pp.1–22.

    Google Scholar 

  • Smithies, R.H. (2000) The Archean tonlaite-tondhjemitegranodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett., v.182, pp.115–125.

    Article  Google Scholar 

  • Smithies, R.H., Champion, D.C. and Cassidy, K.F. (2003) Formation of earth’s early continental crust. Precambrian Res., v.127, pp.89–101.

    Article  Google Scholar 

  • Solankar, S.N., Ugarkar, A.G. and Vasudev, V.N. (2006) Characteristics of fluids associated with polymict conglomerate hosted gold mineralization near Surapalli of eastern part of Kolar greenstone belt, Dharwar craton. Indian Mineralogist, v.40, pp.156–169.

    Google Scholar 

  • Sun, S.S. and Mcdonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M. J. Norry (Eds.), Magmatism in the ocean basins. Geol. Soc. London, Spec. Publ. No.42, pp.313–345.

    Google Scholar 

  • Swami Nath, J. and Ramakrishnan, M. (1981) Present classification and correlation. In: J. Swami Nath and M. Ramakrishnan (Eds.), Early Precambrian Supracrustals of Southern Karnataka. Mem. Geol. Surv. India, v.112, pp.23–38.

    Google Scholar 

  • Taylor, P.N., Chadwick, B., Moorbath, S., Ramakrishnan, M. and Viswanatha, M.N. (1984) Petrography, chemistry and isotopic ages of Peninsular gneisses. Dharwar acid volcanics and Chitradurga granites with special reference to Archaean evolution of Karnataka craton, southern India. Precambrian. Res., v.3, pp.349–375.

    Article  Google Scholar 

  • Thurston, P.C., Ayres, L.D., Edwards, G.R., Gelinas, L., Ludden, J.N. and Verpaelst, P. (1985) Archaean bimodal volcanism. In: L.D. Ayres, P.C. Thurston, K.D. Card and W. Weber (Eds.), Evolution of Archaean supracrustal sequences. Geol. Assoc. Can. Spec. Pap., v.28, pp.7–22.

    Google Scholar 

  • Ugarkar, A.G. and Vasudev V.N. (1999) Geochemistry and tectonic setting of Archaean gold bearing metavolcanic rocks of Mangalur schist belt, Eastern Dharwar craton, Karnataka. Indian Mineralogist, v.33, pp.1–17.

    Google Scholar 

  • Ugarkar, A.G. and Natikar R.D. (2008) Amphibolite, a nonauriferous metavolcanic litho unit from Gadag gold field, Dharwar craton, Karnataka. Indian Mineralogist, v.42, pp.30–42.

    Google Scholar 

  • Ugarkar, A.G. Panaskar, D.B. and Ranganath Gowda, G. (2000) Geochemistry, petrogenesis and tectonic setting of metavolcanics and their implications for gold mineralization in Gadag gold field, Southern India. Gondwana Res., v.3, pp.371–384.

    Article  Google Scholar 

  • Ujike, O. and Goodwin, A.M. (1987) Geochemistry and origin of Archaean felsic metavolcanic rocks, Central Noranda area, Quebec, Canada. Can. Jour. Earth Sci., v.24, pp.2551–2567.

    Article  Google Scholar 

  • Viswanatha, M.N. and Ramkrishnan, M. (1981) Kolar belt. In: J. Swami Nath and M. Ramakrishnan (Eds.), Early Precambrian supracrustals of Southern Karnataka. Mem. Geol. Surv. India, v.112, pp.221–245.

    Google Scholar 

  • Viswanathan, S. (1974) Basaltic komatiite occurrences in the Kolar gold field of India? Geol. Mag., v.111, pp.353–354.

    Article  Google Scholar 

  • Viswanathan, S. and Chandrasekharam, D. (2011) Greenstone, tonalite, trondhjemite and granitoids craton, their genesis and growth from early Archaean: a review. International Jour. Earth Sci. Engg., v.4, pp.3–25.

    Google Scholar 

  • Wager, L.R. and Mitchelll, R.C. (1951) The distribution of trace elements during strong fractionation of basic magma, further study on Skaeargaard intrusions, East Greenland. Geochim. Cosmochim. Acta, v.1, pp.129–208.

    Article  Google Scholar 

  • Walker, R.J., Shirey, S.B., Hanson, G.N., Rajamani, V. and Horan, M.F. (1990) Re-Os and O isotope systematics of the Archaean Kolar Schist Belt, South India. Geochem. Cosmochim. Acta, v.53, pp.3005–3013.

    Article  Google Scholar 

  • Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, J.L., Li, C.F., Xiong, X.L. and Ma, J.L. (2006) Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Jour. Petrol., v.47, pp.119–144.

    Article  Google Scholar 

  • Zacharia, J.K., Mohanta, M.K. and Rajamani, V. (1996) Accretionary evolution of the Ramagiri chist belt, Eastern Dharwar Craton. Jour. Geol. Soc. India, v.47, pp.279–291.

    Google Scholar 

  • Ziauddin, M. (1975) The acid volcanic and pyroclastics (Champion gneiss and autoclastic conglomerate) of the Kolar schist belt. Indian Minerals, v.21, pp.367–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ugarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugarkar, A.G., Solankar, S.N. & Vasudev, V.N. Geology and geochemistry of archaean felsic metavolcanic rocks of the Eastern Part of the Kolar greenstone belt, Dharwar craton, India: Implications for their petrogenesis and geodynamic setting. J Geol Soc India 81, 192–202 (2013). https://doi.org/10.1007/s12594-013-0022-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-013-0022-x

Keywords

Navigation