Skip to main content

Advertisement

Log in

Generation of emissivity and land surface temperature maps using MODIS TIR data for lithological mapping over the Singhbhum-Orissa Craton

  • Published:
Journal of the Geological Society of India

Abstract

The present study was undertaken with four fold objectives, namely, (i) to estimate land surface temperature using MODIS TIR data; (ii) to calculate relative emissivities from MODIS TIR data; (iii) to identify various lithologies based on relative emissivity and land surface temperature estimation; and finally, (iv) to carry out comparative assessment analysis between the prepared lithological map and the published lithological map. The land surface temperatures for different pixels were estimated using two methods, viz., Reference Channel and Emissivity Normalization; whereas, relative emissivities were calculated by applying three methods, viz., Reference Channel, Emissivity Normalization and Alpha Residual. Lithological maps were subsequently prepared based on the estimated land surface temperatures and relative emissivity values. The present study shows that the Emissivity Normalization method gives the best results for land surface temperature estimation and also for lithological discrimination based on emissivity estimation. Twenty-four lithounits demarcated by the present study match with those of the published map, while four lithounits of the published map could not be identified in the present study. On the other hand, six additional unclassified lithounits could be demarcated in the present study, which need to be crosschecked by field study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Anderson, G.P., Felde, G., Gardner, J., Hoke, M., Jeong, B. Pukall, L.S., Ratkowski, A. and Burke, H.-H. (1999) Atmospheric correction for short-wave spectral imagery based on MODTRAN4. Proc. SPIE Imaging Spectrometry, v.3753. pp. 61–69.

    Google Scholar 

  • All India Weather Bulletin (2003) India Meteorological Department, New Delhi.

  • Becker, F. (1987) Impact of spectral emissivity on the measurement of land surface temperatures from a satellite. Int. Jour. Rem. Sens., v.8(10), pp.1509–1522.

    Article  Google Scholar 

  • Becker, F. and Li, Z.L. (1990) Temperature-independent spectral indices in thermal infrared bands. Rem. Sens. Environ., v.32, pp.17–33.

    Article  Google Scholar 

  • Dash, P., Gottsche, F.M., Olesen, F.S. and Fisher, H. (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int. Jour. Rem. Sens., v.23(13), pp.2563–2594.

    Article  Google Scholar 

  • Dunn, J.A. (1929) The geology of north Singhbhum. Mem. Geol. Soc. India, Bangalore.

    Google Scholar 

  • Gillespie, A.R., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S. and Kahle, A.B. (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. on Geosc. and Rem. Sens., v.36, pp.1113–1126.

    Article  Google Scholar 

  • Gillespie, A.R. (1985) Lithologic mapping of silicate rocks using TIMS. The TIMS Data User’s Workshop, June 18–19, 1985, JPL Pub. 86-38, pp.29–44.

  • Hook, S.J., Gabell, A.R., Green, A.A. and Kealy, P.S. (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geological studies. Rem. Sens. Environ., v.42, pp.123–135.

    Article  Google Scholar 

  • Hunt, G.R. (1980) Electromagnetic radiation: communication link in remote sensing. In: B. S. Siegal and A. Gillespie (Eds.), Remote Sensing in Geology. Wiley, New York, pp.5–45.

    Google Scholar 

  • Kahle, A.B., Madura, D.P. and Soha, J.M. (1980) Middle infrared multispectral aircraft scanner data analysis for geological application. Appl. Optics. v.19, pp.2279–2290.

    Article  Google Scholar 

  • Kahle, A.B. (1987) Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophys., v.52(7), pp.858–874.

    Google Scholar 

  • Kealy, P.S. and Hook, S.J. (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperature. IEEE Trans. Geosc. and Rem. Sens., v.31(6), pp.1155–1164.

    Article  Google Scholar 

  • Li, Z.L., Becker, F., Stoll, M.P. and Wan, Z. (1999) Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Rem. Sens. Environ., v.69, pp.197–214.

    Article  Google Scholar 

  • Liang, S. (2001) An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Trans. Geosc. and Rem. Sens., v.39(2), pp.264–274.

    Article  Google Scholar 

  • Lyon, R.J.P. (1965) Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ. Geol., v.60, pp.715–736.

    Article  Google Scholar 

  • Majumdar, T.J. and Bhattacharya, B.B. (1988) Derivation of surface temperatures on land after corrections due to atmospheric water vapor — a case study with INSAT VHRR data. Rem. Sens. Environ., v.26, pp.185–191.

    Article  Google Scholar 

  • Naha, K. (1965) Metamorphism in relation to stratigraphy, structure and movements in parts of east Singhbhum, eastern India. Quart. Jour. Geol., Min. Metall. Soc. India, v.37, pp.41–88.

    Google Scholar 

  • Saha, A.K. (1994) Crustal evolution of Singhbhum — North Orissa, Eastern India. Mem. Geol. Soc. India, no.27, 341p.

  • Salisbury, J.W, Walter, L.S. and Vergo, N. (1987) Midinfrared (2.5–25μm) spectra of minerals. U.S. Geological Survey Open-File Report 87-263.

  • Salisbury, J.W., Walter, L.S. and D’Aria, D.M. (1988) Midinfrared (2.5–13.5μm) spectra of igneous rocks: first edition. U.S. Geological Survey Open-File Report 88-686.

  • Salisbury, J.W. and D’Aria, D.M. (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Rem. Sens. Environ., v.42, pp.83–106.

    Article  Google Scholar 

  • Sarkar, S.N. and Saha, A.K. (1963) On the occurrence of two intersecting Precambrian orogenic belts in Singhbhum and adjacent areas, India. Geol. Magz., v.100(1), pp.69–92.

    Article  Google Scholar 

  • Sarkar, A.N. and Chakraborty, D.K. (1982) One orogenic belt or two? A structure reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India. Photogrammetria, v.37, pp.185–201.

    Article  Google Scholar 

  • Sobrino, J.A., El Kharraz, J. and Li, Z.L. (2003) Surface temperature and water vapour retrieval from MODIS data. Int. Jour. Rem. Sens., v.24(24), pp.5161–5182.

    Article  Google Scholar 

  • Wan, Z. and Dozier, J. (1996) A generalized split window algorithm for retrieving land surface temperature from space. IEEE Trans. on Geosc. and Rem. Sens., v.34(4), pp.892–905.

    Article  Google Scholar 

  • Wan, Z. and Snyder, W. (1996) MODIS land surface temperature algorithm theoretical basis document, version 2.3, ICESS/UCSB, December, http://modarch.gsfc.nasa.gov/MODIS/ATBD/atbdmod11.pdf.

  • Wan, Z. and Li, Z.L. (1997) A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/ MODIS data. IEEE Trans. on Geosc. and Rem. Sens., v.35, pp.980–996.

    Article  Google Scholar 

  • Wan, Z. (1999) MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.3. Contract Number: NAS5-31370, Institute for Computational Earth System Science, University of California, Santa Barbara.

    Google Scholar 

  • Wan, Z., Zhang, Y., Zhang, Q. and Li, Z.L. (2002) Validation of the land surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data. Rem. Sens. Environ., v.83, pp.163–180.

    Article  Google Scholar 

  • Wan, Z., Zhang, Y., Zhang, Q. and Li, Z.L. (2004) Quality assessment and validation of the MODIS global land surface temperature. Int. Jou. Rem. Sens., v.25(1), pp.261–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, T.J., Pal, S.K. & Bhattacharya, A.K. Generation of emissivity and land surface temperature maps using MODIS TIR data for lithological mapping over the Singhbhum-Orissa Craton. J Geol Soc India 80, 685–699 (2012). https://doi.org/10.1007/s12594-012-0194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0194-9

Keywords

Navigation