Skip to main content
Log in

High resolution facies record on late Holocene flood plain sediments from lower reaches of Narmada Valley, Western India

  • Published:
Journal of the Geological Society of India

Abstract

A high resolution quantitative granulometric record for site Uchediya [21°43′2.22″ N, 73° 6′26.22″ E; 10 m a. s. l.] gives understanding towards accretion history of the late Holocene flood plain in the lower reaches of Narmada River. Two sediment facies (sandy and muddy) and seven subfacies (sandy subfacies: StMS+FS+CS, SmFS+MS, SlFS+VFS, and StMS + CS; muddy subfacies: FmSILT+VFS+FS, FmSILT+VFS (O) and FmSILT+VFS (T)) are identified based on cluster analysis supplemented with sedimentary structures observed in field and other laboratory data. Changes in hydrodynamics are further deduced based on various sedimentological parameters and their ratios leading to arrive at a depositional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allchin, B. and Hegde, K.T.M. (1969) The background of early man in the Narmada Valley, Gujarat: a preliminary report of the 1969 season’s field work. Jour. MS Univ. Baroda, v.12, pp.141–145.

    Google Scholar 

  • Bartholdy, J., Christiansen, C. and Pedersen, J.B.T. (2007) Comparing spatial grain-size trends inferred from textural parameters using percentile statistical parameters and those based on the log-hyperbolic method. Sedimentary Geol., v.202, pp.436–452.

    Article  Google Scholar 

  • Bedi, N. and Vaidyanadhan, R. (1982) Effect of neotectonics on the morphology of the Narmada river in Gujarat, Western India. Z. Geomorph.N.F, pp.87–102.

  • Bhandari, S., Maurya, D.M. and Chamyal, L.S. (2005) Late Pleistocene alluvial plain sedimentation in Lower Narmada Valley, Western India: Palaeoenvironmental implications. Jour. Asian Earth Sci., v.24, pp.433–444.

    Article  Google Scholar 

  • Blott, S.J. and Pye, K. (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments Earth Surface Processes and Landforms, v.26, pp.1237–1248.

    Google Scholar 

  • Brandono, M., Freezza, V., Tomassetti, L., Pedley, M. and Matteucci, R. (2009) Facies analysis and palaeoenvironmental interpretation of the Late Oligocene Attard Member (Lower Coralline Limestone Formation), Malta. Sedimentology, v.56, pp.1138–1158.

    Article  Google Scholar 

  • Buscombe, D. and Masselink, G. (2009) Grain-size information from the statistical properties of digital images of sediment. Sedimentology, v.56, pp.421–438.

    Article  Google Scholar 

  • Chamyal, L.S., Khadkikar, A.S., Malik, J.N. and Maurya, D.M. (1997) Sedimentology of the Narmada alluvial fan, western India. Sedimentary Geol., v.107, pp.263–279.

    Article  Google Scholar 

  • Chamyal, L.S., Maurya, D.M., Bhandari, S. and Raj, R. (2002) Late Quaternary geomorphic evolution of the lower Narmada valley, Western India: implications for neotectonic activity along the Narmada-Son Fault. Geomorphology, v.46, pp.177–202.

    Article  Google Scholar 

  • Chamyal, L.S., and Merh, S.S. (1992) Sequence stratigraphy of the surface Quaternary deposits in the semi-arid basins of Gujarat. Man and Environment, v.17, pp.33–40.

    Google Scholar 

  • Chamyal, L.S., Sharma, B., Merh, S.S. and Karami, H. (1994) Significance of bank material at Tilakwada in lower Narmada Valley. Curr. Sci., v.66, pp.306–307.

    Google Scholar 

  • Cheetham, M.D., Keene, A.F., Bush, R.T., Sullivan, L.A. and Erskine, W.D. (2008) A comparison of grain-size analysis methods for sand-dominated fluvial sediments. Sedimentology, v.55, pp.1905–1913.

    Article  Google Scholar 

  • Citterio, A. and Piegay, H. (2009) Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology, v.56, pp.461–482.

    Article  Google Scholar 

  • Doeglas, D.J. (1968) Grain-size indices, classification and environment. Sedimentology, v.10, pp.83–100.

    Article  Google Scholar 

  • Folk, R.L. (1966) A review of grain-size parameters. Sedimentology, v.6, pp.73–93.

    Article  Google Scholar 

  • Folk, R.L. (1974) Petrology of Sedimentary Rocks. Hemphil Publishing Company, Austin, TX.

    Google Scholar 

  • Folk, R.L. and Ward, W.C. (1957) Brazos River bar: a study in the significance of grain size parameters. Jour. Sediment. Petrol., v.27, pp.3–26.

    Google Scholar 

  • Friedman, G.M., (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. Jour. Sediment. Petrol., v.37. pp.327–354.

    Google Scholar 

  • Friedman, G.M. and Sanders, J. (1978) Principles of Sedimentology. Wiley, New York.

    Google Scholar 

  • Friend, P., Hirst, J. and Nichols, G. (1986) Sandstone-body structure and river process in the Ebro Basin of Aragon, Spain. Cuadernos de geología ibérica. Jour. Iberian Geol., pp.9–30.

  • Friend, P.F., Slater, M.J. and Williams, R.C. (1979) Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Jour. Geol. Soc. London, v.136, pp.39–46.

    Article  Google Scholar 

  • Gadekar, D., Naik, S. and Sahai, B. (1981) Some aspects of geomorphic evolution of the Lower Narmada and Mahi rivers, from Landsat imagery. Recent Res. Geol., pp.32–41.

  • Ganapathi, S. and Pandey, A.N. (1991) Evolution of Landforms on Narmada and Tapti Estuarine Deltas, Gujarat Quaternary Deltas of India, pp.103.

  • Goossens, D. (2008) Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology, v.55, pp.65–96.

    Google Scholar 

  • Guerzoni, S., Portaro, R., Trincardi, F., Molinaroli, E., Langone L., et al. (1996) Statistical analyses of grain-size, geochemical and mineralogical data in core CM92-43, Central Adriatic basin. Mem. Ist. ital. Idrobiol, v.55, pp.231–245.

    Google Scholar 

  • Hajek, E.A., Huzurbazar, S. V., Mohrig, D., Lynds, R.M. and Heller, P.L. (2010) Statistical Characterization of Grain-Size Distributions in Sandy Fluvial Systems. Jour. Sediment. Res., v.80, pp.184–192.

    Article  Google Scholar 

  • Jackson, R.G. (1975) Hierarchical attributes and a unifying model of bed forms composed of cohesionless material and produced by shearing flow. Bull. Geol. Soc. Amer., v.86, pp.1523.

    Article  Google Scholar 

  • Knox, J.C. (2000) Sensitivity of modern and Holocene floods to climate change. Quaternary Sci. Rev., v.19, pp.439–457.

    Article  Google Scholar 

  • Krumbein, W.C. (1934) Size frequency distribution of sediments. Jour. Sediment. Petrol., v.4, pp.65–77.

    Google Scholar 

  • Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., et al. (2002) Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quaternary Sci. Rev., v.21, pp.1633–1641.

    Article  Google Scholar 

  • Macklin, M.G., and Lewin, J. (2003) River sediments, great floods and centennial-scale Holocene climate change. Jour. Quaternary Sci., v.18, pp.101–105.

    Article  Google Scholar 

  • Martinius, A.W. (2000) Labyrinthine Facies Architecture of the Tortola Fluvial System and Controls on Deposition (Late Oligocene-Early Miocene, Loranca Basin, Spain). Jour. Sedimentary Res., v.70, pp.850–867.

    Article  Google Scholar 

  • Martins, L.R. (1965) Significance of skewness and kurtosis in environmental interpretation. Jour. Sediment. Res., v.35, pp.768.

    Google Scholar 

  • Miall, A. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. Fluvial Sedimentology, v.5, pp.597–604.

    Google Scholar 

  • Miall, A.D. (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., v.22, pp.261–308.

    Article  Google Scholar 

  • Nanson, G., and Tooth, S. (1999) Arid-zone rivers as indicators of climate change. Paleoenvironmental reconstruction in arid lands. Oxford and IBH, New Delhi and Calcutta, pp.75–216.

    Google Scholar 

  • Oldfield, F., Hao, Q., Bloemendal, J.A.N., Gibbs-Eggar, Z., Patil S., et al. (2009) Links between bulk sediment particle size and magnetic grain-size: general observations and implications for Chinese loess studies. Sedimentology, v.56, pp.2091–2106.

    Article  Google Scholar 

  • Pandey, S.K., Singh, A.K. and Hasnain, S.I. (2002) Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari Glacier, Kumaon Himalaya, India. Hydrological Sci. Jour., v.47, pp.213–226.

    Article  Google Scholar 

  • Passega, R. (1964) Grain size representation by CM patterns as a geologic tool. Jour. Sediment. Res., v.34, pp.830.

    Google Scholar 

  • Poizot, E., Méar, Y. and Biscara, L. (2008) Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications. Earth Sci. Rev., v.86, pp.15–41.

    Article  Google Scholar 

  • Purkait, B. (2006) Grain-size distribution patterns of a point bar system in the Usri River, India. Earth Surface Processes and Landforms, v.31, pp.682–702.

    Article  Google Scholar 

  • Raj, R. (2007) Late Pleistocene fluvial sedimentary facies, the Dhadhar River basin, Western India. Quaternary Internat., v.159, pp.93–101.

    Article  Google Scholar 

  • Raj, R. (2008) Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India. Jour. Earth System Sci., v.117, pp.41–48.

    Article  Google Scholar 

  • Raj, R., Bhandari, S., Maurya, D.M. and Chamyal, L. S. (2003) Geomorphic Indicators of Active Tectonics in the Karjan River Basin, Lower Narmada Valley, Western India. Jour. Geol. Soc. India, v.62, pp.739–752.

    Google Scholar 

  • Raj, R. and Yadava, M.G. (2009) Late Holocene uplift in the lower Narmada basin, western India. Curr. Sci., v.96, pp.985–988.

    Google Scholar 

  • Reid, I. and Frostick, L. (1997) Channel form, flows and sediments in deserts. Arid zone geomorphology: Process, form and change in drylands, pp.205–229.

  • Ren, J. and Packman, A.I. (2007) Changes in fine sediment size distributions due to interactions with streambed sediments. Sedimentary Geol., v.202, pp.529–537.

    Article  Google Scholar 

  • Richard, G.A., Julien, P.Y. and Baird, D.C. (2005) Statistical analysis of lateral migration of the Rio Grande, New Mexico. Geomorphology, v.71, pp.139–155.

    Article  Google Scholar 

  • Sahu, B.K. (1964) Depositional mechanisms from the size analysis of clastic sediments. Jour. Sediment. Petrol., v.34, pp.73–83.

    Google Scholar 

  • Sant, D.A. (1991) Structure and Geomorphic evolution of the Lower Narmada Valley in Western India. Unpubl, Ph. D. Thesis, the Maharaja Sayajrao University, Vadodara, 228p.

    Google Scholar 

  • Sant, D.A. (1999) Landscape, Structure and Morphological Development of Saurashtra Peninsula and Lower Narmada Valley, Western India. Mem. Geol. Soc. of India, no.43, pp.335–352.

  • Sant, D.A. and Karanth, R.V. (1988) Morphological Parameters and their Correlation with Litology and Structure of the Area betwen Uchh Nadi and Narmada River in Central Gujarat. Navnirman, v.19, pp.17–28.

    Google Scholar 

  • Sant, D.A. and Karanth, R.V. (1993) Drainage evolution of the lower Narmada valley, western India Geomorphology, v.8, pp.221–244.

    Google Scholar 

  • Sukumaran, P., Parvez, I.A., Sant, D.A., Rangarajan, G. and Krishnan, K. (2011) Profiling of Late Tertiary — Early Quaternary surface in the lower reaches of Narmada valley using Microtremors. Jour. Asian Earth Sci., v.41(3), pp.325–334.

    Article  Google Scholar 

  • Sukumaran, P., Rajshekhar, C., Sant, D.A. and Krishnan, K. (Accepted) Late Holocene Storm Records from Lower Reaches of Narmada Valley, western India. Jour. Geol. Soc. India, v.79

  • Syvitski, J.P. (Ed.) (2007) Principles, methods, and application of particle size analysis. Cambridge University Press.

  • Tenner, W. F. (2007a) Application of suite statistics to stratigraphy and sea-level. In: J.P. Syvitski (Ed.), Principle, mehods, and application of particle Size Analysis. Cambridge University Press, Cambridge, New York, pp.283–292.

    Google Scholar 

  • Tenner, W.F. (2007b). Suite statistics: The hudrodynamic evolution of the sediment pool. In: J.P. Syvitski (Ed.), Principle, mehods, and application of particle Size Analysis. Cambridge University Press, Cambridge, New York, pp.225–236.

    Google Scholar 

  • Visher, G.S. (1969) Grain size distributions and depositional processes. Jour. Sediment. Petrol., v.39, pp.1074–1106.

    Google Scholar 

  • Wainwright, G. (1964) The Pleistocene Deposits of the Lower Narmada River and an Early Stone Age Industry from the River Chambal. The Maharaja Sayajirao University of Baroda, Dept. Archaeology and Ancient History, Series 7, Baroda, India.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhin Sukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumaran, P., Sant, D.A., Krishnan, K. et al. High resolution facies record on late Holocene flood plain sediments from lower reaches of Narmada Valley, Western India. J Geol Soc India 79, 41–52 (2012). https://doi.org/10.1007/s12594-012-0009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0009-z

Keywords

Navigation