Advertisement

Role of westerlies and thermohaline characteristics on sea-ice extent in the Indian Ocean Sector of Antarctica

  • M. NuncioEmail author
  • Alvarinho J. Luis
Article
  • 69 Downloads

Abstract

Satellite-derived sea-ice extent in the Indian Ocean Sector during the period November 1978 to December 2006 was studied in relation to the atmospheric forcing and oceanic thermohaline structure. The study revealed that sea-ice extent increased when the ocean exhibited higher stability. Low sea-ice extent was observed during 1985 to 1993, when the zonal winds and latent flux was relatively weak and when the ocean exhibited strong vertical mixing facilitated by low stability thereby, deepening the mixed layer to ∼250 m. This was reflected in the ocean surface layer temperature, which was relatively warm (−0.3°C). Winds increased during 1996 to 2000, but due to higher oceanic stability mixed layer depth shallowed (< 200 m) leading to reduced vertical mixing of deep warmer layers with the surface water, leading to an enhancement in the sea-ice extent.

Keywords

Sea ice extent Indian Ocean sector Ocean stability Winds 

References

  1. Bertler, N.A.N., Naish, T.R., Mayewski, P.A. and Barrett, P.J. (2006), Opposing oceanic and atmospheric ENSO influence on Ross Sea region Antarctica. Advances in Geosciences. v.6,pp.83–86.CrossRefGoogle Scholar
  2. Cavalieri, D.J. and Parkinson, C.L. (2008), Antarctic sea ice variability and trends 1979–2006. Jour. Geophys. Res., v.113, doi:10.1029/2007/JC004564.Google Scholar
  3. Comiso, J. (1999), updated 2008. Bootstrap sea ice concentrations from NIMBUS-7 SMMR and DMSP SSM/I, National Snow and Ice Data Center, Boulder, Colorado USA. (http://nsidc.org/data/nsidc-0079.html)Google Scholar
  4. Coward, A.C. and de CUEVAS, B. A. (2005), The OCCAM 66 level model: physics, initial conditions and external forcing. SOC internal report no.99Google Scholar
  5. Curran, M.A.J., Van Ommen, T.D., Morgan, V.I., Phillips, K.L. and Palmer, A.S. (2003) Ice core evidence for Antarctic sea ice decline since the 1950s. Science, v.302. pp.1203–1206.CrossRefGoogle Scholar
  6. Gordon, H. B. and O’ Farrell, S. P. (1997) Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Wea. Rev., v.125, pp.875–907.CrossRefGoogle Scholar
  7. Ivchenko, V.O., Zalesny, V.B., Drinkwater, M.R. and Schroter. J. (2006) A quick response of equatorial ocean to Antarctic sea-ice anomalies. Jour. Geophys. Res., v.111, C10018. doi:10.1029/2005/JC003061.CrossRefGoogle Scholar
  8. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G.J., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D. (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., v.77, pp.437–470.CrossRefGoogle Scholar
  9. Liu, J., Yuan, X., Rind, D. and Martinson, D.G. (2002) Mechanism study of ENSO and southern high latitude teleconnections. Geophys. Res. Lett., v.29(14). doi: 10.1029/2002GL015143.Google Scholar
  10. Liu, J., Curry, A.J. and Martinson, D.G. (2004) Interpretation of recent Antarctic sea-ice variability. Geophys. Res. Lett., v.31, doi:10.1029/2003GL018732.Google Scholar
  11. Manabe, S.M., Stouffer, R.J., Spelman, M.J. and Bryan, K. (1991) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2, part 1,Annual mean l response. Jour. Climat., v.4, pp.785–818CrossRefGoogle Scholar
  12. Meredith, M.P. and Hogg, A.M. (2006) Circumpolar response to southern ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., v.33, L16608. doi:10.1029/2006GL026 499CrossRefGoogle Scholar
  13. Pond, S and Pickard, G.L. (1978) Introductory dynamic oceanography. Pergamon Press, Oxford, UK. 241p.Google Scholar
  14. Richardson, G., Wadley, M.R. and Heywood, K. J. (2005) Shortterm climate response to a freshwater pulse in the Southern Ocean. Geophys. Res. Lett., v.32, L03702. doi:10.1029/2004/GL021586.CrossRefGoogle Scholar
  15. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. and Rind, D. (2008) Trends in Antarctic sea ice retreat and advance and their relation to El Niño-Southern annular mode variability. Jour. Geophys. Res., v.113. doi:10.1029/2007/ JC004269.Google Scholar
  16. White, W.B. and Peterson, R.G. (1996) AnAntarctic circumpolar wave in surface pressure, wind and sea ice extent. Nature, v.380, pp.699–702.CrossRefGoogle Scholar
  17. Yuan, X. (2004) ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Sci., v.16(4), pp.415–425.CrossRefGoogle Scholar
  18. Zhang, J. (2007) Increasing Antarctic sea-ice under warming atmospheric conditions. Jour. Climat., v.20, doi:10.1175/JCLI14136.1.Google Scholar
  19. Zwally, J., Comiso, C. J., Parkinson, C.L. and Cavalieri, D.J. (2002) Variability of Antarctic sea ice 1979–2002. Jour. Geophys. Res., v.107(C5). doi:10.1029/2000JC000733.Google Scholar

Copyright information

© Geological Society of India 2011

Authors and Affiliations

  1. 1.Polar Remote Sensing Division, National Centre for Antarctic and Ocean ResearchMinistry of Earth SciencesHeadland Sada, GoaIndia

Personalised recommendations