Skip to main content
Log in

Petrography and stable isotope geochemistry of the cretaceous El Abra Limestones (Actopan), Mexico: Implication on diagenesis

  • Published:
Journal of the Geological Society of India

Abstract

Petrography and stable isotopes (carbon and oxygen) geochemistry of limestones from the El Abra Formation, Actopan, were studied to identify their digenetic environments. The major petrographic types identified are mudstone, wackestone, grainstone, and boundstone. Most of the studied samples show positive δ13C values, except two samples (2 and 28), which are slightly negative values (−0.27‰ and −0.02‰). The organic remains identified in foraminiferal wackestone type can be responsible for the negative δ13C values. The δ18O values range from −12.41‰ to −4.02‰ and indicate meteoric diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader, M., Macouin, M., Trindade, R.I.F., Hadrien, M-H., Yang, Z., Sun, Z. and Besse, J. (2009) A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C. Earth Planet. Sci. Lett., v.288(1–2), pp.213–227.

    Article  Google Scholar 

  • Aguayo-Camargo, J.E. (1978) Sedimentary environments and diagenesis of a Cretaceous reef complex, eastern Mexico: Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología. Anales, v.5, pp.83–140.

    Google Scholar 

  • Aguayo-Camargo, J.E. (1998) The middle Cretaceous El Abra Limestone at its type locality (facies, diagenesis and oil emplacement), East-Central Mexico. Rev. Mex. Ciencias Geol., v.15, pp.1–8.

    Google Scholar 

  • Alencaster, G. and Garcia-Barrera, P. (2008) Albian Radiolitid rudists (Mollusca Bivalvia) from East-Central Mexico. Geobios, v.41, pp.571–587.

    Article  Google Scholar 

  • Allan, J.R. and Matthews, R.K. (1977) Carbon and oxygen isotopes as diagenetic and stratigraphic tools: data from surface and subsurface of Barbados, West Indies. Geology, v.5, pp.16–20.

    Article  Google Scholar 

  • Amodio, S., Ferreri, V., D’Argenio, B., Weissert, H. and Sprovieri, M. (2008) Carbon-isotope stratigraphy and cyclostratigraphy of shallow-marine carbonates: the case of San Lorenzello, Lower Cretaceous of southern Italy. Cretaceous Res., v.29(5–6), pp.803–813.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P. and Worden, R.H. (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the Upper Miocene Kudankulam Formation, Southern India: Implications for paleoenvironment and diagenesis. Chemie der Erde-Geochem., v.69(1), pp.45–60.

    Article  Google Scholar 

  • Bonet, F. (1952) La facies urgoniana del Cretácico medio de la región de Tampico. Boletín de la Asociación Mexicana de Geólogos Petroleros, v.4, pp.153–262.

    Google Scholar 

  • Buonocunto, F.P., Sprovieri, M., Bellanca, A., D’Argenio, B., Ferreri, V., Neri, R. and Ferruzza, G. (2002) Cyclostratigraphy and high-frequency carbon isotope fluctuations in Upper Cretaceous shallow-water carbonates, southern Italy. Sedimentology, v.49, pp.1321–1337.

    Article  Google Scholar 

  • Carpenter, S.J., Erickson, J.M., Lohmann, K.C. and Owen, M.R. (1988) Diagenesis of fossiliferous concretions from the Upper Cretaceous Fox Hills Formation, North Dakota. Jour. Sedim. Petrol., v.58, pp.706–723.

    Google Scholar 

  • Carrillo-Bravo, J. (1971) La plataforma Valles-San Luis Potosi: Boletín de la Asociación Mexicana de Geólogos Petroleros, v.13(1–6), 113p.

  • Cerling, T.E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett., v.71(2), pp.229–240.

    Article  Google Scholar 

  • Cerling, T.E., Quade, J., Wang, Y. and Bowman, J.R. (1989) Carbon isotopes in soils and palaeosols as ecologic and palaeoecologic indicators. Nature, v.341, pp.138–139.

    Article  Google Scholar 

  • Chakraborty, P.P., Dey, S. and Mohanty, S.P. (2010) Proterozoic platform sequences of Peninsular India: implications towards basin evolution and supercontinent assembly. Jour. Asian Earth Sci., v.69, pp.589–607.

    Article  Google Scholar 

  • Coniglio, M., Myrow, P. and White, T. (2000) Stable carbon and oxygen isotope evidence of Cretaceous sea-level fluctuations recorded in septarian concretions from Pueblo, Colorado, U.S.A. Jour. Sediment. Res., v.70, pp.700–714.

    Article  Google Scholar 

  • Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochim. Cosmochim. Acta, v.12, pp.133–149.

    Article  Google Scholar 

  • Deshpande, R.D., Bhattacharya, S.K., Jani, R.A. and Gupta, S.K. (2003) Distribution of oxygen and hydrogen isotopes in shallow ground waters from southern India: influence of a dual monsoon system. Jour. Hydrol., v.271, pp.226–239.

    Article  Google Scholar 

  • Dunham, R.J. (1962) Classification of carbonate rocks according to depositional texture, in Ham, W. E. (ed.), Classification of carbonate rocks. Amer. Assoc. Petrol. Geol. Mem., pp.108–121.

  • Enos, P. (1974) Reefs, platforms, and basins of Middle Cretaceous of northeast Mexico. Amer. Assoc. Petrol. Geol. Bull., v.58, pp.800–809.

    Google Scholar 

  • Folk, R.L. (1959) Practical petrographic classification of limestones. Amer. Assoc. Petrol. Geol. Bull., v.43, pp.1–38.

    Google Scholar 

  • Fölmi, K.B., Weissert, H., Bisping, M. and Funk, H. (1994) Phosphogenesis, carbon-isotope stratigraphy, and carbonateplatform evolution along the Lower Cretaceous northern Tethyan margin. Geol. Soc. Amer. Bull., v.106(6), pp.729–746.

    Article  Google Scholar 

  • Friedman, G.M. (1959) Identification of carbonate minerals by staining methods. Jour. Sediment. Petrol., v.29, pp.87–97.

    Google Scholar 

  • Friedman, I. and O’Neil, J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. Washington, DC. USGS, Professional Paper, 440 K, 96p.

  • Carrasco-Velázquez, B.E., Morales-puente, P., Cienfuegos, E. and Lozano-santacruz, R. (2004) Geoquímica de las rocas asociadas al paleokarst cretácico en la plataforma de Actopan: evolución paleohidrológica. Rev. Mex. Cien. Geol., v.21(3), pp.382–396.

    Google Scholar 

  • Gobron, N., Pinty, B., Taberner, M., Mélin, F., Verstraete, M.M. and Widlowski, J.L. (2006) Monitoring the photosynthetic activity of vegetation from remote sensing data. Adv. Space Res., v.38, pp.2196–2202.

    Article  Google Scholar 

  • Gökdag, H. (1974) Sedimentpetrographische und isotopengeochemische (O18, C13) Untersuchungen im Dachsteinkalk (Obemor-Rhät) der Nördlichen Kalkalpen. Diss. Univ. Marburg, 156pp. 33pls. 2encls. 10 diagr., Naturwiss. Fak., Marburg.

  • Gröcke, D.R., Price, G.D., Robison, S.A., Baraboshkin, E.Y., Mutterlose, J. and Ruffell, A.H. (2005) The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth Planet. Sci. Lett., v.240(2), pp.495–509.

    Article  Google Scholar 

  • Grötsch, J., Billing, I. and Vahrenkamp, V. (1998) Carbon-isotope stratigraphy in shallow water carbonates: implications for Cretaceous black-shale deposition. Sediment., v.45(4), pp.623–634.

    Article  Google Scholar 

  • Hudson, J.D. (1977) Stable isotopes and limestone lithification: Jour. Geol. Soc. London, v.133(6), pp.637–660.

    Article  Google Scholar 

  • Jenkyns, H.C. (1995) Carbon isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains: Proc. Ocean Drill. Prog. Sci. Res., v.143, pp.99–104.

    Google Scholar 

  • Jenseuis, J., Buchardt, B., Jorgensen, N.O. and Padersen, S. (1988) Carbon and oxygen isotopic studies of the Chalk reservoir in the Skjold oil field, Danish North sea, implications for diagenesis. Chemical Geology, v.73, pp.97–107.

    Google Scholar 

  • Johnson, C.C., Collins, L.S. and Kauffman, E.G. (1988) Rudistid biofacies across the El Abra Formation (late Albian? — early middle Cenomanian) of northeastern Mexico: Transaction of the 11th Caribbean Geological Conference, Barbados. pp. 1–12.

  • Katz, A. and Friedman, G.M. (1965) The preparation of stained acetate peels for the study of carbonate rocks. Jour. Sedim. Petrol., v.35, pp.248–249.

    Google Scholar 

  • Keith, M.L., Anderson, G.M. and Eichler, R. (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim. Cosmochim. Acta, v.28, pp.1757–1786.

    Article  Google Scholar 

  • Kumar, B., Sharma, S.D., Sreenivas, B., Dayal, A.M., Rao, M.N., Dubey, N. and Chawla, B.R. (2002) Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, central India: Precambrian Res., v.113, pp.43–63.

    Article  Google Scholar 

  • Land, L.S. (1970) Phreatic versus vadose meteoric diagenesis of limestones: evidence from a fossil water table. Sedimentology, v.14, pp.175–185.

    Article  Google Scholar 

  • Longstaffe, F.J., Tilley, B.J., Ayalan, A. and Connolly, C.A. (1992) Controls on pore-water evolution during sandstone diagenesis, Western Canada Sedimentary Basin: an oxygen isotope perspective. In: D.W. Houseknecht and E.D. Pittman (Eds.), Origin, Diagenesis, and Petrophysics of clay minerals in sandstones. SEPM Spec. Publ., v.47, pp.13–34.

  • López-Doncel, R. (2003) La Formación Tamabra del Cretácico medio en la porci-central del margen occidental de la Plataforma Valle San Luís Potosí, centro-noreste de México. Rev. Mex. Cien. Geol., v.20(1), pp.1–19.

    Google Scholar 

  • Ludvigson, G.A., Witzke, B.J., Gonzalez, L.A., Hammond, R.H. and Plocher, O.W. (1994) Sedimentology and carbonate geochemistry of concretions from the Greenhorn marine cycle (Cenomanian-Turonian), eastern margin of the Western Interior Seaway, in Shurr, G.W., Ludvigson, G.A., Hammond, R.H. (eds.), Perspectives on the eastern margin of the Cretaceous Western Interior Basin. Geol. Soc. Amer., Spec. Pap., v.287, pp.145–173.

  • Madhavaraju, J., Kolosov, I., Buhlak, D., Armstrong-Altrin, J.S., Ramasamy, S. and Mohan, S.P. (2004) Carbon and oxygen isotopic signatures in Albian-Danian limestones of Cauvery basin, southeastern India. Gondwana Res., v.7(2), pp.527–537.

    Article  Google Scholar 

  • Maheshwari, A., Sial, A.N., Guhey, R. and Ferreira, V.P. (2005) C-isotope composition of carbonates from Indravati Basin, India: Implications for regional stratigraphic correlation. Gondwana Res., v.8(4), pp.603–610.

    Article  Google Scholar 

  • Marshall, J.D. (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag., v.129, pp.143–160.

    Article  Google Scholar 

  • Mckenzie, J.A. (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: A stable isotope study. Jour. Geol., v.89, pp.185–198.

    Article  Google Scholar 

  • Milliman, J.D. and Muller, J. (1977) Characteristics and genesis of shallower water and deep sea limestones. In: N.R. Anderson and A. Maahoff (Eds.), The fate of fossil fuel CO2 in the Oceans, New York, Plenum., pp. 655–672.

  • Mirsal, J.A. and Zankl, H. (1979) Petrography and geochemistry of carbonate void-filling cements in fossil reefs. Inter. Jour. Earth Sci. (Geol Rundsch), v.68(3), pp.920–951.

    Google Scholar 

  • Mishra, S., Gaillard, C., Hertler, C., Moigne, A-M. and Simanjuntak, T. (2010) India and Java: Contrasting records, intimate connections. Quat. Inter., v.223–224, pp.265–270.

    Article  Google Scholar 

  • Morad, S., Al-Aasm, I.S., Ramseyer, K., Marfil, R. and Aldahan, A.A. (1990) Diagenesis of carbonate cements in Permo-Triassic sandstones from the Iberian range, Spain: evidence from chemical composition and stable isotopes. Sedim. Geol., v.67, pp.281–295.

    Article  Google Scholar 

  • Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of sedimentary carbonates: Developments in Sedimentology, v.48, 707p.

  • Nagarajan, R. Sial, A.N., Armstrong-altrin, J.S., Madhavaraju, J. and Nagendra, R. (2008) Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Rev. Mex. Cien. Geol., v.25(2), pp.225–235.

    Google Scholar 

  • Nelson, C.S. (1988) An introductory perspective on non-tropical shelf carbonates. Sediment. Geol., v.60, pp.3–17.

    Article  Google Scholar 

  • Nelson, C.S. and Smith, A.M. (1996) Stable oxygen and carbon isotope fields for skeletal and diagenetic components in New Zealand Cenozoic non tropical carbonate sediments and limestones: A synthesis and review. New Zealand Jour. Geol. Geophy., v.39, pp.93–107.

    Article  Google Scholar 

  • Préat, A., Kolo, K., Prian, J-P. and Delpomdor, F. (2010) A peritidal evaporite environment in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin). Precambrian Res., v.177(3–4), pp.253–265.

    Article  Google Scholar 

  • Quade, J., Cerling, T.E. and Bowman, J.R. (1989) Development of the Asian monsoon revealed by marked ecologic shift in the latest Miocene of Northern Pakistan. Nature, v.342, pp.163–166.

    Article  Google Scholar 

  • Santos, R.V., Souza De Alvarenga, C.J., Babinski, M., Ramos, M.L.S., Cukrov, N., Fonseca, M.A., Sial, A.N., Dardenne, M.A. and Noce, C.M. (2004) Carbon isotopes of Mesoproterozoic-Neoproterozoic sequences from Southern São Francisco craton and Araçuaí Belt, Brazil: Paleographic implications. Jour. South Amer. Earth Sci., v.18, pp.27–39.

    Article  Google Scholar 

  • Tewari, V.C., Kumar, K., Lokho, K., and Siddaiah, N.S. (2010) Lakadong limestone: Paleocene-Eocene boundary carbonate sedimentation in Meghalaya, northeastern India. Curr. Sci., v.98, pp.88–95.

    Google Scholar 

  • Vahrenkamp, V.C. (1996) Carbon isotope stratigraphy of the Upper Kharaib and Shuaiba Formations: implications for the Lower Cretaceous evolution of the Arabian Gulf Region. Amer.Assoc. Petrol. Geol. Bull., v.80, pp.647–662.

    Google Scholar 

  • Veizer, J. and Demovic, R. (1973) Environment and climatic controlled fractionation of elements in the Mesozoic carbonate sequences of the western Carpathians. Jour. Sediment. Petrol., v.43, pp.258–271.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Goddéris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H. (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., v.161, pp.59–88.

    Article  Google Scholar 

  • Verma, S.P. (2005) Estadística básica para el manejo de datos experimentales: Aplicación en la geoquímica (geoquimiometría): Universidad Nacional Autónoma de México, Mexico, D.F., 186 p.

  • Wanless, H.R., Burton, E.A. and Dravis, J. (1981) Hydrodynamics of carbonate fecal pellets. Jour. Sediment. Petrol., v.51, pp.27–36.

    Google Scholar 

  • Weissert, H. (1989) C-isotope stratigraphy, a monitor of palaeoenvironmental change: a case study from the Early Cretaceous. Surv. Geophy., v.10, pp.1–16.

    Article  Google Scholar 

  • Weissert, H. and Erba, E. (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Jour. Geol. Soc. London, v.161(4), pp.695–702.

    Article  Google Scholar 

  • Weissert, H. Lini, A. FÖLLMI, K.B. and Kuhn, O. (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeo. Palaeoclim. Palaeoecol., v.137, pp.189–203.

    Article  Google Scholar 

  • Wendler, I., Wendler, J. Gräfe, K.-U. Lehmann, J. and Willems, H. (2009) Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretaceous Res., v.30(4), pp.961–979.

    Article  Google Scholar 

  • Yoshioka, H., Asahara, Y., Tojo, B. and Kawakami, S-i. (2003) Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a glacial to interglacial transition. Precambrian Res., v.124(1), pp.69–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Armstrong-Altrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong-Altrin, J.S., Madhavaraju, J., Sial, A.N. et al. Petrography and stable isotope geochemistry of the cretaceous El Abra Limestones (Actopan), Mexico: Implication on diagenesis. J Geol Soc India 77, 349–359 (2011). https://doi.org/10.1007/s12594-011-0042-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-011-0042-3

Keywords

Navigation