Skip to main content
Log in

Clay smear processes in mechanically layered sequences — Results of water-saturated model experiments with free top surface

  • Published:
Journal of the Geological Society of India

Abstract

The aim of this study is to improve our knowledge of the processes that lead to clay smear during faulting of a layered sand-clay sequence in an analogue sandbox model. We carefully characterized mechanical properties of the materials used by a series of geotechnical tests. Displacement field was quantified using PIV (Particle Image Velocimetry). The model is water-saturated to allow the deformation of wet clay and sand in one experiment comprising a sand package with a horizontal layer of clay above a predefined rigid basement fault. The thickness and rigidity of the clay layer are the parameters varied in this study. The model shows a range of structures that are related to competence contrast between sand and different clay types. Results show ductile shearing of soft clay with a transition to brittle fracturing of stiff clay accompanied by the formation of rotating clay blocks in the fault zone. Localized deformation is observed through time showing (i) the propagation of one active fault migrating laterally through the sediment package, and (ii) the formation of a stable prism between two or more active faults that gets progressively smaller with minor rotation of the hanging wall fault. Continuous clay smear is observed resulting from the lateral injection of clay as well as from a reworked mixture of sand and clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J., Urai, J.L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., Van Der Zee, W., and Schmatz, J. (2005) Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques. Jour. Struc.Geol. v.27, pp.283–301.

    Article  Google Scholar 

  • Bense, V.F. and Person, M.A. (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers, Water Resources Research v.42, W05421.

    Article  Google Scholar 

  • Cardozo, N., Bhalla, K., Zehnder, A. and Allmendinger, R. (2003) Mechanical models of fault propagation folds and comparison to the trishear kinematic model. Jour. Struc. Geol. v.25, pp.1–18.

    Article  Google Scholar 

  • Clausen, J.A. and Gabrielsen, R.H. (2002) Parameters that control the development of clay smear at low stress states: an experimental study using ring-shear apparatus. Jour. Struc. Geol. v.24, pp.1569–1586.

    Article  Google Scholar 

  • Clausen, J.A., Gabrielsen, R.H., Johnsen, E. and Korstgård, J.A. (2003) Fault architecture and clay smear distribution. Examples from field studies and drained ring-shear experiments. Norsk Geologisk Tidsskrift v.83, pp.131–146.

    Google Scholar 

  • Cloos, E. (1955) Experimental analysis of fracture patterns. Geol. Soc. Amer. Bull. v.66, pp.241–253.

    Article  Google Scholar 

  • Cloos, H. (1930) Zur experimentellen Tektonik — V. Vergleichende Analyse dreier Verschiebungen. Geologische Rundschau v.21, pp.353–367.

    Article  Google Scholar 

  • Egholm, D.G., Clausen, O.R., Sandiford, M., Kristensen, M.B. and Korstgård, J.A. (2008) The mechanics of clay smearing along faults. Geology v.36, pp.787–790.

    Article  Google Scholar 

  • Eisenstadt, G. and Sims, D. (2005) Evaluating sand and clay models; do rheological differences matter? Jour. Struc. Geol. v.27, pp.1399–1412.

    Article  Google Scholar 

  • Fulljames, J.R., Zijerveld, L.J.J. and Franssen, R.C.M.W. (1997) Fault seal processes: Systematic analysis of fault seals over geological and production time scales. In Moeller-Pedersen, and A.G. Koester, Eds. Hydrocarbon Seals, 7, pp.51–59.

  • Gudehus, G. and Nübel, K. (2004) Evolution of shear bands in sand. Geotechnique v.54, pp.187–201.

    Google Scholar 

  • Gudehus, G., and Karcher, C. (2007) Hypoplastic simulation of normal faults without and with clay smears. Jour. Struc. Geol. v.29, pp.530–540.

    Article  Google Scholar 

  • Hage, B. and Werther, J. (1997) The guarded capacitance probe — a tool for the measurement of solids flow patterns in laboratory and industrial fluidized bed combustors. Powder Technology v.93, pp.235–245.

    Article  Google Scholar 

  • Holland, M., Urai, J.L. and Martel, S. (2006) The internal structure of fault zones in basaltic sequences. Earth Planet. Sci. Lett. v.248, pp.286–300.

    Article  Google Scholar 

  • Horsfield, W.T. (1977) An experimental approach to basementcontrolled faulting. Geologie en Mijnbouw v.56, pp.363–370.

    Google Scholar 

  • Karakouzian, M. and Hudyma, N. (2002) A new apparatus for analog modeling of clay smears. Jour. Struc. Geol. v.24, pp.905–912.

    Article  Google Scholar 

  • Lehner, F.K. and Pilaar, W.F. (1997) The emplacement of clay smears in synsedimentary normal faults: inference from field observations near Frechen, Germany. In: P. Pedersen (Ed.), Hydrocarbon seals: importance for petroleum exploration and production. Elsevier, pp.39–50.

  • Lindanger, R, Øygaren, M., Gabrielsen, R.H., Mjelde, R., Randen, T. and Tjøstheim, B.A., (2004) Analogue (plaster) modelling and synthetic seismic representation of hangingwall fault blocks above of rampflat ramp faults. First Break v.22, pp.22–30.

    Google Scholar 

  • Lindsay, N.G., Murphy, F.C., Walsh, J.J. and Watterson, J. (1993) Outcrop studies of shale smears on fault surfaces. Spec. Publ. Internat. Assoc. Sedimentologists v.15, pp.113–123.

    Google Scholar 

  • Liu, Z., Zheng, Y., Jia, L. and Zhang, Q. (2005) Study of bubble induced flow structure using PIV. Chemical Engineering Sci. v.60, pp.3537–3552.

    Article  Google Scholar 

  • Mandl, G. (1988) Mechanics of tectonic faulting; models and basic concepts Developments in structural geology. Elsevier Sci. Publ., Amsterdam, Netherlands.

    Google Scholar 

  • Mandl, G. (2000) Faulting in brittle rocks. Springer, London.

    Google Scholar 

  • Mandl, G., Jong, L.N.J.D. and Maltha, A. (1977) Shear Zones in Granular Material — An Experimental Study of their Structure and Mechanical Genesis. Rock Mechanics Felsmechanik Mécanique des Roches v.9, pp.95–144.

    Article  Google Scholar 

  • Medwedeff, D.A. and Krantz, R.W. (2002) Kinematic and analog modeling of 3-D extensional ramps: observations and a new 3-D deformation model. Jour. Struc. Geol. v.24, pp.763–772.

    Article  Google Scholar 

  • Newbery, A.P., Rayment, T. and Grant, P.S. (2004) A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc sprayforming. Materials Science and Engineering A v.383, pp.137–145.

    Article  Google Scholar 

  • Nübel, K. (2002) Experimental and Numerical Investigation of Shear Localization in Granular Material, PhD, Karlsruhe, p.159.

  • Nübel, K. and Weitbrecht, V. (2002) Visualization of Localization in Grain Skeletons with Particle Image Velocimetry. Jour. Testing and Eval. v.30, pp.322–328.

    Article  Google Scholar 

  • Patton, T.L. and Fletcher, R.C. (1995) Mathematical blockmotion model for deformation of a layer above a buried fault of arbitrary dip and sense of slip. Jour. Struc. Geol. v.17, pp.1455–1472.

    Article  Google Scholar 

  • Peacock, D.C.P and Sanderson, D.J. (1992) Effects of layering and anisotropy on fault geometry. Jour. Geol. Soc. London v.149, pp.793–802.

    Article  Google Scholar 

  • Richard, P. and Cobbold, P. (1990) Experimental insights into partitioning of fault motions in continental convergent wrench zones. Annales Tectonicae v.4, pp.35–44.

    Google Scholar 

  • Richard, P. and Krantz, R.W. (1991) Experiments on fault reactivation in strike-slip mode. Tectonophysics v.188, pp.177–131.

    Google Scholar 

  • Schöpfer, M.P.J., Childs, C. and Walsh, J.J. (2006) Localisation of normal faults in multilayer sequences. In: C. Childs and J.J. Walsh (Eds.), Jour. Struc. Geol. v.28, pp.816–833.

  • Schreurs, G., Buiter, S.J.H., Boutelier, D., Corti, G., Costa, E., Cruden, A.R., Daniel, J.-M., Hoth, S., Koyi, H.A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R.W., Withjack, M.O., Yamada, Y., Cavozzi, C., Del Ventisette, C., Elder Brady, J.A., Hoffmann-Rothe, A., Mengus, J.-M., Montanari, D. and Nilforoushan, F. (2006) Analogue benchmarks of shortening and extension experiments. In: S.J.H. Buiter and G. Schreurs (Eds.), Analogue and numerical modeling of crustal-scale processes. Geol. Soc. Spec. Publ. v.253, pp.1–27.

  • Steingart, D.A. and Evans, J.W. (2005) Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. Part I: experimental method and results. Chemical Engg. Sci. v.60, p.1043.

    Article  Google Scholar 

  • van der Zee, W. (2002) Dynamics of fault gouge development in Layers sand-clay sequences. Shaker Verlag, Aachen.

    Google Scholar 

  • van der Zee, W. and Urai, J. (2005) Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia. Jour. Struc. Geol. v.27(12), pp.2281–2300.

    Google Scholar 

  • van der Zee, W., Urai, J.L. and Richard, P.D. (2003) Lateral clay injection into normal faults. GeoArabia v.8(3), pp.501–522.

    Google Scholar 

  • van Mier, J.G.M. (1986) Multiaxial strain-softening of concrete. Materials and Structures v.19, pp.179–190.

    Article  Google Scholar 

  • Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Jour. Struc. Geol. v.21, pp.1039–1048.

    Article  Google Scholar 

  • Weber, K.J., Mandl, G., Pilaar, W.F., Lehner, F.K. and Precious, R.G. (1978) The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. Proc. 10th Annual Offshore Technology Conference, Houston, Texas 4, pp.2643–2653.

  • Wolf, H., König, D. and Triantafyllidis, T. (2003) Experimental Investigation of shear band patterns in granular material. Jour. Struc. Geol. v.25, pp.1229–1240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Schmatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmatz, J., Holland, M., Giese, S. et al. Clay smear processes in mechanically layered sequences — Results of water-saturated model experiments with free top surface. J Geol Soc India 75, 74–88 (2010). https://doi.org/10.1007/s12594-010-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0025-9

Keywords

Navigation