Skip to main content

Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics

Abstract

Natural electromagnetic radiation (EMR) impulses are emitted from rocks under stress. Electromagnetic emission may start during crystal deformation prior to and during the nucleation phase of nanocracks. The emission direction is either parallel with or normal to the crack surfaces. The EMR magnetic component is measured by the sensor or aerial of an instrument, the Cerescope, at frequencies from 5 to 50 kHz. Measurements at the surface show directions of recent stresses remarkably well. A calibration of EMR intensity in terms of stress magnitude is possible in tunnels, where the overburden pressure can be calculated. Two examples from the Upper Rhine Graben and NW India show EMR line measurements. In both cases, stress concentrations at fault or bedding surfaces can be detected. These surfaces can be regarded as tectonically active. Two further examples of EMR determinations in tunnels give more detailed information on the regional stress field. The example from the Swiss Jura fold-and-thrust belt shows directional results, with different directions beneath and above the regional detachment horizon at the base of the belt. The example from central Scandinavia shows a late Caledonian shear zone as a boundary between two recent stress domains, and gives absolute values of stress.

This is a preview of subscription content, access via your institution.

References

  • Bahat, D., Rabinovitch, A. and Frid, V. (2005) Tensile fracturing in rocks — tectonofractographic and electromagnetic radiation methods. Springer, Heidelberg. 570p.

    Google Scholar 

  • Becker, A. (1999) In situ stress data from the Jura Mountains — new results and interpretation. Terra Nova, v.11, pp. 9–15.

    Article  Google Scholar 

  • Becker, A. (2000) The Jura Mountains — an active foreland foldand-thrust belt? Tectonophysics, v.321, pp.381–406.

    Article  Google Scholar 

  • Biswas, S.K. (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, v.135, pp.307–327.

    Article  Google Scholar 

  • Biswas, S.K. and Khattri, K.N. (2002) A geological study of earthquakes in Kutch, Gujarat, India. Jour. Geol. Soc. India, v.60, pp.131–142.

    Google Scholar 

  • Cardozo, G.L. and Behrmann, J.H. (2006) Kinematic analysis of the Upper Rhine graben boundary fault system. Jour. Struct. Geol., v.28, pp.1028–1039.

    Article  Google Scholar 

  • Dèzes, P., Schmid, S.M. and Ziegler, P.A. (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, v.389, pp.1–33.

    Article  Google Scholar 

  • Eide, E.A. (coord.) (2002) BATLAS — Mid Norway plate reconstruction atlas with global and Atlantic perspectives. Geological Survey of Norway, Trondheim, 75p.

    Google Scholar 

  • Fossen, H. and Rykkelid, E. (1992) Postcollisional extension of the Caledonian orogen in Scandinavia: structural expressions and tectonic significance. Geology, v.20, pp.737–740.

    Article  Google Scholar 

  • Fredén, C. (Ed.) (1994) Geology. National Atlas of Sweden. Almqvist & Wiksell, Stockholm, 208p.

    Google Scholar 

  • Frid, V. (1997) Electromagnetic radiation method for rock and gas outburst forecast. Jour. Applied Geophys., v.38, pp.97–104.

    Article  Google Scholar 

  • Frid, V. (2001) Calculation of electromagnetic radiation criterion for rock burst hazard forecast in coal mines. Pure and Applied Geophys., v.158, pp.931–944.

    Article  Google Scholar 

  • Gayer, R.A. (Ed.) (1985) The tectonic evolution of the Caledonide-Appalachian orogen. Vieweg, Braunschweig/Wiesbaden, 194p.

    Google Scholar 

  • Gayer, R.A. (Ed.) (1989) The Caledonide geology of Scandinavia. Graham & Trotman, London, 312p.

    Google Scholar 

  • Gee, D.G. and Sturt, B.A. (Eds.) (1985) The Caledonide Orogen — Scandinavia and Related Areas. John Wiley & Sons, Chichester, 1266p.

    Google Scholar 

  • Haimberger, R., Hoppe, A. and Schäfer A. (2005) High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. Internat. Jour. Earth Sci., v.94, pp.657–668.

    Article  Google Scholar 

  • Karanth, R.V., Sohoni, P.S., Mathew, G. and Khadkikar, A.S. (2001) Geological observations on 26th January 2001 Bhuj earthquake. Jour. Geol. Soc. India, v.58, pp.193–201.

    Google Scholar 

  • Karanth, R.V. and Gadhavi, M.S. (2007) Structural intricacies: emergent thrusts and blind thrusts of Central Kachchh, western India. Current Science, v. 93, pp. 1271–1280.

    Google Scholar 

  • Lauterbach, M. (2002) Monitoring historic rockfall deposits near Dornbirn, Austria, with the NPEMFE-Method (natural pulsed electromagnetic field of Earth), Excursion Guide. CERG Intensive Course 2002, Amsterdam (RFASE) and Dornbirn (Vorarlberger Naturschau), pp.105–107.

  • Lichtenberger, M. (2005) Regional stress field as determined from electromagnetic radiation in a tunnel. Jour. Struct. Geol., v.27, pp.2150–2158.

    Article  Google Scholar 

  • Lichtenberger, M. (2006a) Determination of horizontal principal directions of stress in the Lower Muschelkalk in Northern Baden-Württemberg (Germany) from geogenic electromagnetic radiation. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v.238, pp.279–312.

    Google Scholar 

  • Lichtenberger, M. (2006b) Underground measurements of electromagnetic radiation related to stress induced fractures in the Odenwald mountains (Germany). Pure and Applied Geophys., v.163, pp.1661–1677.

    Article  Google Scholar 

  • Lichtenberger, M. (2006c) Bestimmen von Spannungen in der Lithosphäre aus geogener elektromagnetischer Strahlung. Gaea heidelbergensis, v.16, ISSN 1612-5452.

  • Liu, M. and He, X. (2001) Electromagnetic response of outburst prone coal. Internat. Jour. Coal Geol., v.45, pp.155–162.

    Article  Google Scholar 

  • Lundqvist, T. and Autio, S. (Eds.) (2000) Description to the Bedrock Map of Central Fennoscandia (Mid-Norden). Geol. Surv. Finland, Spec. Paper, v.28, 176p.

  • Madritsch, H., Schmid, S.M. and Fabbri, O. (2008) Interactions between thin- and thick-skinned tectonics at the northwestern front of the Jura fold-and-thrust belt (eastern France). Tectonics, v.27, TC5005, doi:10.1029/2008TC002282, 2008.

    Article  Google Scholar 

  • Malik, J.N., Sohoni, P.S., Karanth, R.V. and Merh, S.S. (1999) Modern and historic seismicity of Kachchh peninsula, western India. Jour. Geol. Soc. India, v.54, pp.545–550.

    Google Scholar 

  • Mallik, J., Mathew, G., Angerer, T. and Greiling, R.O. (2008) Determination of directions of horizontal principal stress and identification of active faults in Kachchh (India) by Electromagnetic Radiation (EMR). Jour. Geodynamics, v.45, pp.234–245.

    Article  Google Scholar 

  • Mathew, G., Singhvi, A.K. and Karanth, R.V. (2006) Luminescence chronometry and geomorphic evidence of active fold growth along the Kachchh mainland fault (KMF), Kachchh, India, Seismotectonic implications. Tectonophysics, v.422, pp.71–87.

    Article  Google Scholar 

  • Milsom, J. (2003) Field Geophysics. John Wiley & Sons, Chichester, 232p.

    Google Scholar 

  • Mosar, J. (1999) Present-day and future tectonic underplating in the western Swiss Alps; reconciliation of basement/wrenchfaulting and decollement folding of the Jura and Molasse Basin in the Alpine Foreland. Earth Planet. Sci. Lett., v.173, pp.143–155.

    Article  Google Scholar 

  • Obermeyer, H., Lauterbach, M. and Krauter, E. (2001) Monitoring landslides with natural electromagnetic pulsed radiation. In: M. Kühne, H.H. Einstein, E. Krauter, H. Klapperich and R. Pöttler (Eds.), International Conference on Landslides 2001, pp.297–304.

  • Osmundsen, P.T., Braathen, A., Nordgulen, O., Roberts, D., Meyer., G.B. and Eide, E. (2003) The Devonian Nesna shear zone and adjacent gneiss-cored culminations, north-central Norwegian Caledonides. Jour. Geol. Soc. London, v.160, pp.137–150.

    Article  Google Scholar 

  • Parasnis, D.S. (1996) Principles of Applied Geophysics. Chapman & Hall, London, 456p.

    Google Scholar 

  • Peters, G. (2007) Active tectonics in the Upper Rhine Graben — Integration of palaeoseismology, geomorphology, and geomechanical modelling. Logos Verlag, Berlin, 270p.

    Google Scholar 

  • Peters, G. and Van Balen, R.T. (2006) Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben, Germany. Tectonophysics, doi:10.1016/j.tecto.2006.10.008

  • Rabinovitch, A., Bahat, D. and Frid, V. (1996) Emission of electromagnetic radiation by rock fracturing. Zeitschrift für Geologische Wissenschaften, v.24, pp.361–368.

    Google Scholar 

  • Rabinovitch, A., Bahat, D. and Frid, V. (2002) Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression, drilling, and blasting. International Journal of Rock Mechanics and Mining, v.39, pp.125–129.

    Article  Google Scholar 

  • Rabinovitch, A., Frid, V. and Bahat, D. (2007) Surface oscillations — a possible source of fracture induced electromagnetic radiation. Tectonophysics, v.431, pp.15–21.

    Article  Google Scholar 

  • Reinecker, J., Heidbach, O., Tingay, M., Connolly, P. and Müller, B. (2004) The 2004 release of the World Stress Map (available online at www.world-stress-map.org).

  • Reuther, C., Obermeyer, H., Reicherter, K., Reiss, S., Kaiser, A., Buchmann, T., Adam, J., Lohrmann, J. and Grasso, M. (2002) Neotektonik und aktive Krustenspannungen in Südost-Sizilien und ihre Beziehungen zur regionalen Tektonik im Zentralen Mittelmeer. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, v.86, pp.1–24.

    Google Scholar 

  • Reuther, C.-D. and Moser, E. (2007) Orientation and nature of active crustal stresses determined by electromagnetic measurements in the Patagonian segment of the South America Plate. Internat. Jour. Earth Sci., v.97, DOI 10.1007/s00531-007-0273-0.

  • Ritter, J.R.R., Wagner, M., Bonjer, K.-P. and Schmidt, B. (2007) The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben. Internat. Jour. Earth Sci., v.97, DOI 10.1007/s00531-007-0284-x

  • Roberts, D., Nordgulen, Ø. and Melezhik, V. (2007) The UppermostAllochthon in the Scandinavian Caledonides: From a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In: R.D. Hatcher, Jr., M.P. Carlson, J.H. McBride and J.R. Martínez Catalán (Eds.), 4-D Framework of Continental Crust: Geol. Soc. Amer. Mem., v.200, pp.357–377, doi: 10.1130/2007.1200(18).

  • Rotstein, Y., Schaming, M. and Rousse, S. (2005) Structure and Tertiary tectonic history of the Mulhouse High, Upper Rhine Graben: Block faulting modified by changes in the Alpine stress regime. Tectonics, v.24, 2004TC001654.

    Google Scholar 

  • Schumacher, M.E. (2001) Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics, v.21, 2001TC900022.

    Google Scholar 

  • Wang, E., He, X., Dou, L., Zhou, S., Nie, B. and Liu, Z. (2005) Electromagnetic radiation characteristics of coal and rocks during excavation in coal mine and their application. Diqiu Wulixue Bao = Acta Geophysica Sinica, v.48, pp.216–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard O. Greiling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greiling, R.O., Obermeyer, H. Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics. J Geol Soc India 75, 278–288 (2010). https://doi.org/10.1007/s12594-010-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0015-y

Keywords

  • Natural electromagnetic radiation (EMR)
  • Neotectonics
  • Nanofractures
  • Active faults
  • Recent stress