Skip to main content
Log in

Petrogenesis of the granitoid rocks from Askot crystallines, Kumaun Himalaya

  • Published:
Journal of the Geological Society of India

Abstract

The Askot crystallines form a doubly plunging synformal belt and occurs as a detached crystalline belt or klippen in the vast sedimentary terrain lying between Central crystallines towards north and the Almora crystallines to the south. It is dominated by granite gneiss and augen gneiss, and also comprise of metapelites, migmatites and basic intrusives. In this paper, the geochemical studies of the granite gneiss and augen gneiss from the Askot crystallines, Kumaun Himalaya were carried out in order to understand their origin and evolution.

The granite gneiss is generally foliated, with less foliated and porphyritic variety seen in the core part. The K-feldspar shows Carlsbad twinning, while plagioclases show complex twinning. They show euhedral zircon and apatite along with titanite as accessory minerals. The granite gneiss is moderately evolved (Mg# ∼50) and has granodiorite composition with metaluminous, calc-alkaline trends. They show higher concentration of Ti, Ca, Mg and low abundance of ∑REE (∼165 ppm) in comparison to augen gneiss. They show volcanic arc signatures and compare well with Lateorogenic granites of Proterozoic times distributed world wide. These calc-alkaline granites appear derived from a Paleoproterozoic mafic/intermediate lower-crust reservoir probably involving arc magma underplating. Granite gneiss is also peraluminous with molar A/CNK>1.1, and the heterogeneity of granite gneiss can be explained with the precursor melts, experiencing assimilation during up-rise through crust or contamination of source itself involving sediments from the subduction zone.

The augen gneiss is more evolved (Mg# ∼18) and show granite composition. They show megacrysts of perthites in a fine-to medium-grained matrix of feldspars and micas. The REE pattern of the augen gneiss shows much wide compositional variation (∑REE ∼171 ppm) than granite gneiss. It shows syn- to post-orogenic environment and derivation from the partial melting of an upper crustal source. Existing Rb-Sr isotopic data suggest that the granite gneiss defines an isochron age of ∼1700–1800 Ma with a Sri ratio of ∼0.71, while the augen gneiss defines an age of ∼1300 Ma with much evolved Sri ratio (∼1.65). The dominance of granite gneiss in the eastern Kumaun region suggests the production of heterogeneous granitic melts similar to those of Askot crystallines as an important event of crustal growth during Late Paleoproterozoic period in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auden, J.B. (1935) Traverses in the Himalaya. Rec. Geol. Surv. India, v.71, pp.407–433.

    Google Scholar 

  • Bhanot, V.B., Pandey, B.K., Singh, V.P. and Thakur, V.C. (1977) Rb-Sr whole rock age of the granitic-gneiss from Askot area, eastern Kumaun and its implication on tectonic interpretation of the area. Himalayan Geol., v.7, pp.118–122.

    Google Scholar 

  • Bhanot, V.B., Pandey, B.K., Singh, V.P. and Kansal, A.K. (1980). Rb-Sr ages for some granitic and gneissic rocks of Kumaun and Himachal Himalaya. In: K.S. Valdiya and S.B. Bhatia (Eds.), Stratigraphy and correlation of Lesser Himalayan Formation, Hindusthan Publishing Corp., Delhi, pp.139–142.

    Google Scholar 

  • Bentor, Y.K. (1985) The crustal evolution of the Arabo-Nubian massif with special reference to the Sinai Peninsula. Precambrian Res., v.28, pp.1–74.

    Article  Google Scholar 

  • Chakraborty, S.K. and Malaviya, A.K. (1996). Geology of the Almora Group of the Kumaon Lesser Himalaya. Geol. Surv. India Spec. Publ., v.21, pp.39–45.

    Google Scholar 

  • Davidson, J.P. (1996). Deciphering mantle and crustal signatures in subduction zone magmatism. Geophysics Monograph, v.96, pp.251–262.

    Google Scholar 

  • de la Roche, Leterrier, J., Grandclaude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses its relationships with current nomenclature. Chem. Geol., v.29, pp.183–210.

    Article  Google Scholar 

  • Gairola, V.K. (1967) Refolding in the taconites of Kausani area, district Almora, U.P. Pub. Centre. Adv. Stud. Geol. Panjab Univ., v. 3, pp.101–106.

    Google Scholar 

  • Ghose, A. (1972) A note on the polymetallic sulphides mineralization in Askot area, Pithoragarh district, Uttar Pradesh. Rec. Geol. Surv. India, v.107(Part-II), pp.1–11.

    Google Scholar 

  • Harris, N.B.W., Pearce, J.A. and Tindle, A.G. (1986) Geochemical characteristics of collision-zone magmatism. In: M.P. Coward and A.C. Ries (Eds.), Collision Tectonics. Geol. Soc. London Spec. Publ., v.19, pp.67–81.

  • Haskin L.A., Wildeman T.R. and Haskin, M.A. (1968) An accurate procedure for the determination of the rare earths by neutron activation. Jour. Radioanal. Chem., v.1, pp.337–348.

    Article  Google Scholar 

  • Heim, A. and Gansser, A. (1939) Central Himalayas: geological observations of the Swiss Expedition 1936. Mem. Soc. Helv. Sci. Nat., v.73, pp.1–245.

    Google Scholar 

  • Islam, R., Ahmad, T. and Khanna, P.P. (2005) An overview on the granitoids of the NW Himalaya. Himalayan Geol., v.26, pp.49–60.

    Google Scholar 

  • Kent, R.W. (1995) Continental and oceanic flood basalt provinces: Current and future perspectives. In: R.K. Srivastava and R. Chandra (Eds.), Magmatism in relation to diverse tectonic settings, Oxford & IBH Publishing Co., New Delhi, pp.17–42.

    Google Scholar 

  • Khanna, P.P., Saini, N.K., Mukherjee, P.K. and Purohit, K.K. (2009) An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of Silicate Rock Analysis. Himalayan Geol., v.30(1), pp.95–99.

    Google Scholar 

  • Kumar, S., Singh, B.N. and Joshi, M. (1995). Petrogenesis and tectonomagmatic environment of Cambro-Ordovician granitoids of Himalaya: a reappraisal. Geol. Surv. India, Spec. Publ., v.21(1), pp.205–214.

    Google Scholar 

  • Kumar, Y. and Patel, R.C. (2004) Deformation mechanisms in the Chiplakot crystalline belt (CCB) along Kali-Gori valleys (Kumaon), NW-Himalaya. Jour. Geol. Soc. India, v.64, pp.76–91.

    Google Scholar 

  • Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., v. 101, pp.635–643.

    Article  Google Scholar 

  • Mehdi, S.H., Kumar, G. and Prakash, G. (1972) Tectonic evolution of eastern Kumaun Himalaya: a new approach. Himalayan Geol., v.2, pp.481–501.

    Google Scholar 

  • Misra, R.C. and Sharma, R.P. (1973) Geology of the Nandprayag Klippe and central crystallines, Kumaun Himalaya. Bull. Indian Geol. Assoc., v.6, pp.85–98.

    Google Scholar 

  • Myers, J.S. (1997) Geology of Granite. Jour. Roy. Soc. Western Australia, v.80, pp.87–100.

    Google Scholar 

  • Naqvi, S.M., Divakar Rao, V. and Harinarian, H. (1974) The protocontinental growth of the Indian shield and the antiquity of its rift valley. Precambrian Res., v.1, pp.345–398.

    Article  Google Scholar 

  • Pandey, B.K., Singh, V.P., Bhanot, V.B. and Mehta, P.K. (1981) Rb-Sr geochronological studies of the gneissic rocks of the Ranikhet and Masi area of Almora crystallines, Lesser Himalaya, Kumaun, U.P. Abstr. Himalayan Geology Seminar, 12th 237–244.

  • Pande, I.C. and Verma, P.K. (1970) A study of migmatites occurring around Dangoli, Almora district, U.P. In: W.D. West Commemmorative volume, Today & Tomorrow’s Publ., New Delhi, pp.554–568.

    Google Scholar 

  • Paul, S.K. (1998) Geology and tectonics of the central crystallines of northeastern Kumaun Himlaya, India. Jour. Nepal Geol. Soc., v.18, pp.151–167.

    Google Scholar 

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.C. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp.956–983.

    Google Scholar 

  • Pitcher, W.S. (1982) Granite type and Tectonic Environment. In: K.J. Hsu (Ed.), Mountain Building Processes. Academic Press, pp.19–40.

  • Powar, K.B. (1972) Petrology and structure of the Central Crystalline zone, northeastern Kumaun. Himalayan Geol., v.2, pp.34–46.

    Google Scholar 

  • Powell, C., Mc A., Crawford, A.R., Armstrong, R.L., Prakash, R. and Wynne Edward, H.R. (1979) Reconnaissance Rb-Sr dates for the Himalayan Central Gneiss, Northwest India. Indian Jour. Earth Sci., v.6, pp.139–151.

    Google Scholar 

  • Rahman, A. and Zainuddin, S.M. (1993) Bundelkhand granites: an example of collision-related Precambrian magmatism and its relevance to the evolution of the Central Indian Shield. Jour. Geol., v.101, pp.413–419.

    Article  Google Scholar 

  • Rashid, S.A. and Zainuddin, S.M. (1995) The Lower Palaeozoic granitic magmatism near Ranikhet, Kumaun Himlaya: major and trace element geochemistry and tectonic setting. Jour. Geol. Soc. India, v.46, pp.15–25.

    Google Scholar 

  • Roddick, J.A. (1983) Circum-Pacific plutonic terranes: an overview. Geol. Soc. Amer. Inc., Mem., no.159, pp.1–3.

  • Rogers, J.W.R. and Greenberg, J.K. (1981) Trace element in continental-margin magmatism: Part III. Alkaline granites and their relationship to cratonization: summary. Geol. Soc. Am. Bull., v.92(Part-I), pp.6–9.

    Article  Google Scholar 

  • Rogers, J.W.R. and Greenberg, J.K. (1990) Late-orogenic, postorogenic, and anorogenic granites: distinction by major-element and trace-element chemistry and possible origins. Jour. Geol., v.98, pp.291–309.

    Article  Google Scholar 

  • Rogers, J.W.R., Hodges, K.V. and Ghuma, M.A. (1980) Trace element in continental-margin magmatism: Part II. Trace elements in Ben Ghnema batholith and nature of the Precambrian crust in central North Africa: summary. Geol. Soc. Amer. Bull., v.91(Part-I), pp.445–447.

    Article  Google Scholar 

  • Saini, N.K., Mukherjee, P.K., Rathi, M.S., Khanna, P.P. and Purohit, K.K. (1998). A new geochemical reference sample of granite (DH-G) from Dalhousie, Himachal Himalaya. Jour. Geol. Soc. India, v.52, pp.603–606.

    Google Scholar 

  • Saxena, S.P. and Rao, P.N. (1975). Does Almora Nappe exist? Himalayan Geol., v.5, pp.169–184.

    Google Scholar 

  • Sharma, K.K. (1998) Geologic and tectonic evolution of the Himalaya before and after the India-Asia collision. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.107, pp.265–282.

    Google Scholar 

  • Sheraton, J.W., Ellis, D.J. and Kuehner, S.M. (1985) Rare earth element geochemistry of Archean orthogneisses and evolution of the east Antarctica shield. Bur. Miner. Resour. Jour. Aust. Geol. Geophys., v.9, pp.207–218.

    Google Scholar 

  • Tarney, J., Saunders, A.D., Mattey, D.P., Wood, D.A. and Marsh, N.G. (1981) Geochemical aspects of back-arc spreading in the Scotia Sea and west Pacific. Phil. Trans. Roy. London, v.A300, pp.263–285.

    Article  Google Scholar 

  • Trevidi, J.R., Gopalan, K. and Valdiya, K.S. (1984) Rb-Sr age of granitic rocks within the Lesser Himalayan Nappes, Kumaun, India. Jour. Geol. Soc. India, v.25, pp.641–654.

    Google Scholar 

  • Valdiya, K.S. (1962) An outline of the stratigraphy and structure of the southern part of the Pithoragarh district, U.P. Jour. Geol. Soc. India, v.3, pp.27–48.

    Google Scholar 

  • Validya, K.S. (1980) Geology of Kumaun Lesser Himalaya. The Himachal Times Press, Dehradun, India, 291 pp.

    Google Scholar 

  • Wilson, M.R. (1980) Granite types in Sweden. Forh. Geol. Foren. Stockholm, v.102, pp.167–176.

    Google Scholar 

  • Wood, D.A., Joron, J.L. and Treuil M. (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Letts., v.45, pp.326–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rameshwar Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rameshwar Rao, D., Sharma, R. Petrogenesis of the granitoid rocks from Askot crystallines, Kumaun Himalaya. J Geol Soc India 74, 363–374 (2009). https://doi.org/10.1007/s12594-009-0133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0133-6

Keywords

Navigation