Skip to main content
Log in

Animal-sediment relationship of the crustaceans and polychaetes in the intertidal zone around Mandvi, Gulf of Kachchh, Western India

  • Published:
Journal of the Geological Society of India

Abstract

Animal-sediment relationships of two benthic communities (Crustaceans and Polychaetes) were studied around Mandvi coast in the Gulf of Kachchh, Western India. This coast consists of many micro-geomorphic landforms in which benthic communities are inhabited and select their niches and produce endemic biogenic structures. Five intertidal subfacies have been described and four types of grounds are identified, based on substrate consistency. 18 species of crustaceans, 15 species of polychaetes and unsegmented worm nemertea have been identified. Crustacean behavioural activities were observed in dunes, beaches and ridge-runnel in the form of burrowing, pellet making, feeding and crawling traces. Pelleted wall lining burrows of the suspension feeder stomatopodean species of Oratosquilla striata are also abundant in runnels. Motile, deposit feeder polychaetes are abundant on the ridges and are occasionally found on the lower reaches of the beaches, while suspension and filter feeders are found in the runnels. Lagoons consist of mainly grouped funnel branched burrows of Oniphus eremita which is identical to ichnogenus Balanoglossites. Nemertea, which are opportunistic algal grazers, have exploited restricted niches for dwelling-feeding purposes and constructed vertical burrow with pentamerous conical mound. The shore platform consists of cemented, calcareous tubes of filter feeder Serpula along with symbiotic encrusters like Ostrea and barnacles. Ichnocoenoses are discussed and three-dimensional ichno-sedimentologic models are reconstructed for Beach, Ridge, Runnel and Lagoon of the Mandvi intertidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barington, E.J.W. (1965) The biology of Hemichordata and Protochordata, Edinburgh, pp.1–176.

  • Brenchley, G.A. (1976) Predator detection and avoidance: ornamentation of tube caps of Diopatra sp. (Polychaeta-Onuphidae). Mar. Biol., v.38, pp.179–188.

    Article  Google Scholar 

  • Bromley, R.G. (1996) Trace Fossils: Biology, Taphonomy and Applications (2 Edition) Chapman and Hall, London, 361p.

    Google Scholar 

  • Bromley, R.G. and Ekdale, A.A. (1984) Chondrite: a trace fossil indicator of anoxia in sediments. Science, v.224, pp.872–874.

    Article  Google Scholar 

  • Bromely, R.G. and Fursich, F.T. (1980) Comments on proposed amendments to the International Code of Zoological Nomenclature regarding ichnotaxa. Z.N. (S.) 1973). Bull. Zoo. Nomen. v.37, pp.6–10.

    Google Scholar 

  • Carter, R.W.G. (1986) The Morphodynamics of Beach and Ridge Formation: Magilligan, Northern Ireland. Mar. Geol., v.73, pp.191–214.

    Article  Google Scholar 

  • Chakrabarti, A. (1981) Burrow patterns of the Ocypode ceratophthalma (Pallas) and their environment significance. Jour. Paleont., v.55, pp.431–441.

    Google Scholar 

  • Chauhan, O.S., Almedia, F. and Moraes, C. (1993) Regional Geomorphology of the continental slope of NW India of signatures of Deep seated structures. Mar. Geol., v.15, pp.283–296.

    Google Scholar 

  • Cladwell, R.L. and Dingle, H. (1976) Stomatopods. Scientific American, v.234, pp.80–89.

    Google Scholar 

  • Curran, H.A. (1992) Trace fossils in Quaternary, Bahamian-style carbonate environments: the modern to fossil transition. In: C.G. Maples, and R.R. West (Eds.), Trace fossils, short course in paleontology, No.5.

  • Dam, G. (1990) Paleoenvironmental significance of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Paleogeogr. Paleoclim. Paleoecol., v.79, pp.221–248.

    Article  Google Scholar 

  • Desai, B.G. (2002) Animal-sediment relationship of the two benthic communities (crustaceans and polychaetes) in the intertidal zone around Mandvi, Gulf of Kachchh, Western India. Ph.D. Thesis, M.S. University of Baroda, Vadodara, 231p.

    Google Scholar 

  • Desai, B.G. and Patel, S.J. (2008) Trace fossil assemblages (Ichnocoenoses) of the Tectonically uplifted Holocene shoreline, Kachchh, Western India. Jour. Geol. Soc. India, v.71, pp.527–540.

    Google Scholar 

  • Dolan, R., Vincent, L. and Hayden, B. (1974) Crescentic coastal landforms. Z. Geomorp., v.18, pp.1–12.

    Google Scholar 

  • Donaldson, D. and Simpson, S. (1962) Chomatichnus, a new ichnogenus and other trace fossils of Wegber Quarry. Liver. Manch.Geol. Jour., v.3, pp.73–81.

    Google Scholar 

  • Dorjes, J. and Hertweck, G. (1975) Recent biocoenoses and ichnocoenoses in shallow water marine environments. In: R.W. Frey (Ed.), The Study of Trace fossils, New York: Springer Verlag, pp.459–491.

    Google Scholar 

  • Doty, M.S. (1946) Critical tide factors that are correlated with the vertical distribution of marine algae and other organism along pacific coast. Ecology, v.27, pp.315–328.

    Article  Google Scholar 

  • Ekdale, A.A. (1985) Paleoecology of marine endobenthos. Paleogeogr. Paleoclim. Paleoecol., v.50, pp.63–81.

    Article  Google Scholar 

  • Ekdale, A.A. (1992) Muckraking and Mudslinging: the joys of deposit feeding. In: C.G. Maples and R.R. West (Eds.), Trace fossils, short course in paleontology, No.5, pp.145–170.

  • Ekdale, A.A. Bromley, R.G. and Pemberton, S.G. (1984) Ichnology — the use of trace fossils in Sedimentology and stratigraphy, SEPM, Short course, 15p.

  • Fauchald, K. and Jumars, P.A. (1979) The diet of worms: a study of polychaete feeding guilds. Ocean. Mar. Biol. Ann. Rev., v.17, pp.193–284.

    Google Scholar 

  • Frey, R.W. and Howard, J.D. (1988) Beaches and beach related facies, Holocene barrier island of Georgia. Geol. Magz., v.125, pp.621–640.

    Article  Google Scholar 

  • Frey, R.W. and Mayou, T.V. (1971) Decapod burrows in Holocene barrier island beaches and washover fans, Georgia. Senckn. Martima., v.3, pp.53–77.

    Google Scholar 

  • Frey, R.W. and Pemberton, S.G. (1987) The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bull.Can. Petrol. Geol., v.35, pp.333–357.

    Google Scholar 

  • Frey, R.W., Curran, H.A. and Pemberton, S.G. (1984) Trace making activity of crabs and their environmental significance: The ichnogenus Psilonichnus. Jour. Paleont., v.58, pp.333–350.

    Google Scholar 

  • Frey, R.W., Howard, J.D. and Pryor, W.A. (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Paleogeogr. Paleoclim. Paleoecol., v.23, pp.199–229.

    Article  Google Scholar 

  • Glennie, K.W. and Evans, G (1976) A reconnaissance of the Recent sediments of the Ranns of Kutch, India. Sediment., v.23, pp.625–647.

    Article  Google Scholar 

  • Hamano, T., Torisawa, M., Mitsuhashi, M. and Hayashi, K. (1994) Burrows of Stomatopod crustacean Oratosquilla oratoria (DeHann,1844) in Ishikari Bay, Japan. Cretaceous Res., v.23, pp.5–11.

    Google Scholar 

  • Howard, J.D. (1972) Trace fossils as criteria for recognizing shorelines in stratigraphic record. In: J.K. Rigby and W.M.K. Hambil (Eds.), Recognition of ancient sedimentary environments. SEPM Spec. Publ., no.16, pp.215–25.

  • Howard, J.D. and Frey, R.W. (1975) Regional Animal-sediment characteristic of Georgia estuaries. Senken. Maritama., v.7, pp.33–103.

    Google Scholar 

  • Kar, A. (1993) Neotectonic influence on morphologic Variations along the coastline of Kachchh India. Geomorph., v.8, pp.199–219.

    Article  Google Scholar 

  • Kazmierczak and Pszczolkowski (1969) Burrows of Enteropneusta in Muschelkalk (middle Triassic) of the Holy Cross Mountain, Poland. Acta. Paleont. Polo., v.14, pp.299–315.

    Google Scholar 

  • Kumar, N. and Sanders J.E. (1976) Characteristics of shoreface storm deposits; modern and ancient examples. Jour. Sediment. Res., v.46, pp.145–162.

    Google Scholar 

  • Leszczynski, S., Uchman, A. and Bromley, R. (1996) Trace fossils indicating bottom aeration changes: Folusz limestone, Oligocene, Outer Carpathians, Poland. Paleogeogr. Paleoclim. Paleoecol., v.121, pp.79–87.

    Article  Google Scholar 

  • Levins, R. (1968) Evolution in changing environments. Princeton Univ. Press, Princeton, 120p.

    Google Scholar 

  • Macginitie, G.E. and Macginitie, N. (1949) Natural History of Marine animals. McGrawl-Hill, New York, 473p.

    Google Scholar 

  • Mangum, C.P., Santos, S.L. and Thodes, W.R. (1968) Distribution and feeding in the Onuphid polychaete, Diopatra cuprea (Bosc). Mar. Biol., v.2, pp.33–40.

    Article  Google Scholar 

  • Martin, D., Ballesteros, E., Gilli, J.M. and Palacin, C. (1993) Small scale structure of infauna polychaete communities in an estuarine environmental Methodological approach. Estur. Coast. Shelf. Sci., v.36, pp.47–58.

    Article  Google Scholar 

  • Myers, A.C. (1972) Tube-worm sediment relationships of Diopatra cuprea (Polychaeta-Onuphidae). Mar. Biol., v.17, pp.350–356.

    Article  Google Scholar 

  • Patel, S.J. and Desai, B.G. (2001) The republic day Kachchh Earthquake of 2001: Trauma in Oratosquilla striata. Jour. Geol. Soc. India, v.58, pp.215–216.

    Google Scholar 

  • Patel, S.J. and Desai, B.G. (1999) Animal-sediment relationship in a modern tidal flats environment on Mundra coast, Gulf of Kachchh. Gondwan Geol. Mag., v.4, pp.315–320.

    Google Scholar 

  • Patel, S.J., Desai, B.G. and Bhatt, N.Y. (2002) Origin of air trap structures in beach-bar complex and their environmental significance. Jour. Geol. Soc. India, v.58, pp.391–399.

    Google Scholar 

  • Patel, S.J., Desai, B.G. and Bhatt, N.Y. (2001) Neotectonic evolution of the coastal landforms between Jakhau and Mundra, Gulf of Kachchh, Western India. Bull. Ind. Geol. Assoc., v.34, pp.221–232.

    Google Scholar 

  • Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., Maceachern, J. A., Robbins, D. and Sinclar, I. K. (2001) Ichnology and sedimentology of shallow marginal marine systems. Geol. Assoc. Canada, Short course notes, v.15, 343p.

  • Pryor, W.A. (1975) Biogenic sedimentation and alteration of the argillaceous sediments in shallow marine environments. Bull. Geol. Soc. Amer., v.86, pp.1244–1254.

    Article  Google Scholar 

  • Rindsberg, A.K. (1990) Ichnologic consequences of the 1985 International Code of Zoological Nomenclature. Ichnos., v.1, pp.59–63.

    Article  Google Scholar 

  • Rouse, G.W. and Fauchald, K. (1997) Cladistic and Polychaetes. Zool. Scripta., v.26(2), pp.139–204.

    Article  Google Scholar 

  • Schaffner, L.C. (1990) Small scale organism distributions and patterns of species deversity: evidence for positive interactions in an benthic community. Mar. Ecol. Prog. Ser., v.61, pp.107–117.

    Article  Google Scholar 

  • Seilacher, A. (1953) Studien Zur Palichnologie. I Uber die Methoden der Palichnologie. Neus Jahr Geol palaon., v.96, pp.421–425.

    Google Scholar 

  • Skoog, S.Y., Venn, C. and Simpson, E.L. (1994) Distribution of Diopatra cuprea across Modern Tidal Flats: Implications for Skolithos. Palaios, v.9, pp.188–201.

    Article  Google Scholar 

  • Snelgrove, P.L. and Butman, C.A. (1994) Animal-sediment relationships revisited: Causes versus effect. Oceano. Mar. Biol. Ann. Rev., v.32, pp.111–177.

    Google Scholar 

  • Stapor, F.W. (1975) Holocene beach ridge plain development, north-west Florida. Z.Geomorphol., v.22, pp.116–144.

    Google Scholar 

  • Swinbanks, D.D. and Murray, J.W. (1981) Biosedimentologic zonnation of Boundary Bay tidal flats, Flaser River Delta, British columbia. Sediment., v.28, pp.201–237.

    Article  Google Scholar 

  • Thayer, C.W. (1975) Sediment-Mediated Biological Disturbances and the evolution of Marine Benthos. In: M. J.S. Tevesz and P.L. McCall (Ed.) Biotic interactions in recent and fossil benthic communities. Plenum Press, v.3, pp.480–626.

  • Vaugelas, J. DE. (1991) Determination et abundance des peuplement de crustaces decapodes thalassinides fouisseurs (Upogebia et callianasa) de l’archipel des Lavezzi(corse). Traveaux scientifques du Parc Naturel Regional et des Reserves Naturelles de corse.

  • Warner, G. F. (1977) The Biology of Crabs. Elek Science, London, pp.1–202.

    Google Scholar 

  • Wieser, W. (1959) The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. Limnol. Ocenogr., v.4, pp.181–194.

    Article  Google Scholar 

  • Wilson, W.H. Jr. (1990) Competition and predation in marine soft sediment communities. Ann. Rev. Ecol. Sys., v.21, pp.221–241.

    Article  Google Scholar 

  • Woodin, A.A. and Jackson, A.B.C. (1979) Interphyletic competition among marine benthos. Amer. Zool., v.19, pp.1029–1043.

    Google Scholar 

  • Wright, L.D.; Schaffner, L.C. and Maa, J.P.Y. (1997) Biological mediation of bottom boundary layer process and sediment suspension in the lower Chesapeake bay. Mar. Geol. 14: 27–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish J. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.J., Desai, B.G. Animal-sediment relationship of the crustaceans and polychaetes in the intertidal zone around Mandvi, Gulf of Kachchh, Western India. J Geol Soc India 74, 233–259 (2009). https://doi.org/10.1007/s12594-009-0125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0125-6

Keywords

Navigation