Skip to main content
Log in

Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh

  • Published:
Journal of the Geological Society of India

Abstract

The lower Varuna River basin in Varanasi district situated in the central Ganga plain is a highly productive agricultural area, and is also one of the fast growing urban areas in India. The agricultural and urbanization activities have a lot of impact on the groundwater quality of the study area. The river basin is underlain by Quaternary alluvial sediments consisting of clay, silt, sand and gravel of various grades. The hydrogeochemical study was undertaken by randomly collecting 75 groundwater samples from dug wells and hand pumps covering the entire basin in order to understand the sources of dissolved ions, and to assess the chemical quality of the groundwater through analysis of major ions. Based on the total dissolved solids, two groundwater samples are considered unsuitable for drinking purpose, but all samples are useful for irrigation. Graphical treatment of major ion chemistry by Piper diagram helps in identifying hydro-geochemical facies of groundwaters and the dominant hydrochemical facies is Ca-Mg-HCO3 with appreciable percentage of the water having mixed facies. As per Wilcox’s diagram and US Salinity laboratory classification, most of the groundwater samples are suitable for irrigation except two samples (No’s 30 and 68) which are unsuitable due to the presence of high salinity and medium sodium hazard. Irrigation waters classified based on residual sodium carbonate, have revealed that all groundwaters are in general safe for irrigation except one sample (No. 27), which needs treatment before use. Permeability index indicates that the groundwater samples are suitable for irrigation purpose.

Although the general quality of groundwater of the lower Varuna River basin is suitable for irrigation purpose, fifty seven percent of the samples are found having nitrate content more than permissible limit (>45 mg/l) which is not good for human consumption. Application of N-Fertilizers on agricultural land as crop nutrients along the Varuna River course may be responsible for nitrate pollution in the groundwater due to leaching by applied irrigation water. The other potential sources of high nitrate concentration in extreme northern, southern and southwestern parts of study area are poor sewerage and drainage facilities, leakage of human excreta from very old septic tanks, and sanitary landfills. The high fluoride contamination (>1.5 mg/l) in some of the samples may be due to the dissolution of micaceous content in the alluvium. Nitrate and fluoride contamination of groundwater is a serious problem for its domestic use. Hence an immediate protective measure must be put into action in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn., Washington DC, American Public Health Association.

    Google Scholar 

  • Back, W. (1966) Hydrochemical facies and groundwater flow patterns in the northern part of the Atlantic Coastal Plain. USGS Prof. Paper 498-A.

  • Bartarya, S.K. (1993) Hydrochemistry and rock weathering in a sub-tropical Lesser Himalayan river basin in Kumaun, India. Jour. Hydrol., v.146, pp.149–174.

    Article  Google Scholar 

  • Bilas, R. (1980) Groundwater resource of Varanasi district, India: An assessment of condition, use and quality. The National Geographical Jour. India, v.26(1–2), pp.81–93.

    Google Scholar 

  • Bulusu, K.R. and Pande, S.P. (1990) Nitrates — a serious threat to groundwater pollution. Bhujal News, v.5, pp.39–43.

    Google Scholar 

  • Collins, R. and Jenkins, A. (1996) The impact of agricultural land use on stream chemistry in the middle hills of the Himalayas, Nepal. Jour. Hydrol., v.185, pp.71–86.

    Article  Google Scholar 

  • Datta, P.S. and Tyagi, S.K, (1996) Major ion chemistry of groundwater Delhi area: chemical weathering processes and groundwater flow regime. Jour Geol. Soc. India, v.47(2), pp.179–188.

    Google Scholar 

  • Davis, S.N. and Dewiest, R.J.M. (1966) Hydrogeology. Wiley, New York.

    Google Scholar 

  • Doneen, L.D. (1964) Notes on water quality in agriculture; Published as a water science and engineering paper 4001, Department of water sciences and engineering, Univ. of California.

  • Drever, J.I. (1982) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Faure, G. (1998) Principles and applications of geochemistry, 2nd edn. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Fetter, C.W. (1990) Applied Hydrogeology. 2nd Ed., CBS Publishers and Distributors, New Delhi, 592p.

    Google Scholar 

  • Grant, W., Steele, G. and Isiorho, S.A. (1996) Spontaneous abortions possibly related to ingestion of nitrate-contaminated well water-LaGrange County, Indiana, 1991–1994. Morb. Mortal Wkly Rep., v.45, pp.569–572.

    Google Scholar 

  • Gupta, A.K. and Verma, S.K. (1996) Impact of biotic activities on physico-chemical and biological characteristics of Varuna River. Proc. National Conference on Rehabilitation Strategies for Degraded Environment, pp.43–47.

  • Herman Bower. (1978) Groundwater Hydrology, International Student Edition.

  • Iindian Standard Institution. (1991) Drinking water standards, Table 1 Substances and characteristics affecting the acceptability of water for domestic use 18, 10500, New Delhi, pp.1–5.

  • Karanth, K.R. (1989) Groundwater assessment, development and management. Tata McGraw-Hill, New Delhi.

    Google Scholar 

  • Kelley, W.P. (1951) Alkali soils — their formation properties and reclamation. Reinold Publ. Corp., New York.

    Google Scholar 

  • Khurshid, S. and Zaheerudin. (2004) Geochemistry of groundwater: An overview of sporadic fluoride and nitrate contamination in parts of Yamuna basin, India. Jour. Appld. Geochem., v.6(1), pp.25–35.

    Google Scholar 

  • Lance, J.C. (1972) Nitrogen removal by soil mechanisms. Journal of Water Pollution Control Federation (Washington, DC), v.44, pp.1352–1361.

    Google Scholar 

  • Lerner, D.N., Yang, Y., Barrett, M.H. and Tellam, J.H. (1999) Loading of non-agricultural nitrogen in urban groundwater In: J.B. Ellis (Ed.), Impacts of urban growth on surface and groundwater quality, IAHS Publ. No.259, IAHS Press, pp.117–123.

  • Mohan, R., Singh, A.K., Tripathi, J.K. and Chowdhary, G.C. (2000) Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad district. Uttar Pradesh. Jour. Geol. Soc. India, v.55, pp.77–89

    Google Scholar 

  • Morales-Suarez-Varela, M.M., Llopis-Gonzalez, A. and Tejerizo-Perez, M.L. (1995) Impact of nitrates in drinking water on cancer mortality in Valencia, Spain. Eur. Jour. Epidemiol, v.11, pp.15–21.

    Article  Google Scholar 

  • Pandey, D.S. (1993) Groundwater pollution studies in urban settlements of Varanasi city, UP. Annual work programme report — 1992–1993. Central Groundwater Board, Allahabad, 35p.

    Google Scholar 

  • Pandian, K. and Sankar, K. (2007) Hydrogeochemistry and groundwater quality in the Vaippar River basin, Tamil Nadu. Jour. Geol. Soc. India, v.69, pp.970–982.

    Google Scholar 

  • Pawar, N.J. and Shaikh, I.J. (1995) Nitrate pollution of groundwaters from shallow basaltic aquifers, Deccan Trap Hydrologic Province, India. Environ. Geol., v.25, pp.197–204.

    Article  Google Scholar 

  • Piper, A.M. (1953) A graphic procedure in the geochemical interpretation of water analysis. USGS Ground Water Note, no.12, 63p.

  • Raju, N.J., Kotaiah, B. and Reddy, T.V.K. (1992) Biogeochemical aspects in and around a sewage farm at Tirupati, Andhra Pradesh, India. Environmental Conservation, Switzerland, v.18(3), pp.267–269.

    Article  Google Scholar 

  • Raju, N.J. (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah district, Andhra Pradesh, south India. Environ. Geol., v.52, pp.1067–1074.

    Article  Google Scholar 

  • Ramakrishna, (1998) Groundwater, Handbook, India, 556p.

  • Rao, Y.S., Reddy, T.V.K. and Nayudu, P.T. (1997) Groundwater quality in the Niva River basin, Chittoor district, Andhra Pradesh, India. Environ. Geol., v.31(1), pp.56–63.

    Article  Google Scholar 

  • Ray, S.K., Ghosh, S., Tiwari, I.C., Kaur, P., Reddy, D.C.S. and Nagchaudhuri, J. (1983) Dental fluorosis in Ledhupur and Rustampur villages near Varanasi. Indian Jour. Medical Res., pp.112–118.

  • Richards, L.A. (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook 60.

  • Robertson, W.D., Cherry, J.A. and Sudicky, E.A. (1991) Groundwater contamination from two small septic systems on sand aquifers. Groundwater, v.29(1), pp.82–92.

    Google Scholar 

  • Sahgal, U.K., Sahgal, R.K. and Karkar, Y.P. (1989). Nitrate pollution in groundwater in Lucknow area, UP, India. In: Proc. Int.Workshop on Appropriate Methodologies for Development and Management of Groundwater Resources in Developing Countries, v.2, IBH-Oxford, New Delhi.

    Google Scholar 

  • Saleh, A., Al-ruwaih, F. and Shehata, M. (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. Jour. Arid Environ., v.42, pp.195–209.

    Article  Google Scholar 

  • Shih, R.D., Marcus, S.M. and Gnense, C.A. (1997) Methemoglobinemia attributable to nitrate contamination of potable water through boiler fluid additives-New Jersey, 1992 and 1996. Morb. Mortal Wkly Rep., v.46, pp.202–204.

    Google Scholar 

  • Singh, T.N. and Singh, S.N. (1995) Impact of river Varuna on Ganga river water quality at Varanasi. Indian Jour. Environ. Health, v.37(4), pp.272–277.

    Google Scholar 

  • Sinha, T.K. (2003) Groundwater conditions and its quality in Varanasi city. Indian Jour. Geomorphology, v.8(1–2), pp.153–154.

    Google Scholar 

  • Somasundaram, M.V., Ravindran, G. and Tellam, J.H. (1993) Groundwater pollution of the Madras urban aquifer, India. Groundwater, v.31(1), pp.4–12.

    Google Scholar 

  • Subba Rao, N. (2001) Geochemistry of groundwaters in parts of Guntur district, Andhra Pradesh, India. Environ. Geol., v.41, pp.552–562.

    Google Scholar 

  • Subramani, T., Elango, L. and Damodarasamy, S.R. (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Environ. Geol., v.47, pp.1099–1110.

    Article  Google Scholar 

  • Sujatha, D. and Reddy, B.R. (2006) Nitrates in groundwater sources in southeastern part of Ranga Reddy district, Andhra Pradesh, India. Jour.Appld. Geochem., v.8(2), pp.169–180.

    Google Scholar 

  • Umar, R. and Absar, A. (2003) Chemical characteristics of groundwater in parts of the Gambhir River basin, Bharatpur district, Rajasthan, India. Environ. Geol., v.44, pp.535–544.

    Article  Google Scholar 

  • Umar, R., Khan, M.M.A. and Absar, A. (2006) Groundwater hydrochemistry of a sugarcane cultivation belt in parts of Muzaffarnagar district, Uttar Pradesh, India. Environ. Geol., v.49, pp.999–1008.

    Article  Google Scholar 

  • Umar, R. and Ahmed, I. (2007) Hydrochemical characteristics of groundwater in parts of Krishni-Yamuna Basin, Muzaffarnagar district, UP. Jour. Geol. Soc. India, v.69, pp.989–995.

    Google Scholar 

  • Viets, F.G. (Jr). (1974) Nitrogen transformation in organic waster applied to land. pp.51–65 in National Program Staff: Factors Involved in Land Application of Agricultural and Municipal Wastes (DRAFT) ARS. USDA. Beltsville, Maryland, USA, 200p.

    Google Scholar 

  • Wakida, F. and Lerner, D.N. (2005) Non-agricultural sources of groundwater nitrate: a review and case study.Water Res., v.39, pp.3–16.

    Article  Google Scholar 

  • Wilcox, L.V. (1948) The quality of water for irrigation use. US Department of Agriculture, Tech. Bull., 1962. Washington DC., 19p.

  • World Health Organization. (1993) Guidelines for drinking water quality, 2nd edition, v.1, 188p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Janardhana Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janardhana Raju, N., Ram, P. & Dey, S. Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh. J Geol Soc India 73, 178–192 (2009). https://doi.org/10.1007/s12594-009-0074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0074-0

Keywords

Navigation