Skip to main content
Log in

Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere

  • Published:
Journal of the Geological Society of India

Abstract

Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmg olivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmg olivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmg olivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmg olivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2).

The lamrophyres, basanites and melanephelinites associated with the Deccan Volcanic Province entrain both ultramafic and mafic xenoliths. The ultramafic group is represented by (i) spinel lherzolites, harzburgites, and (ii) pyroxenites. Single pyroxene granulite and two pyroxene granulites constitutes the mafic group. Temperature estimates for the West Coast xenoliths indicate equilibration temperatures of 500–900°C while the pressure estimates vary between 6–11 kbar corresponding to depths of 20–35 km. This elevated geotherm implies that the region is characterized by abnormally high heat flow, which is also supported by the presence of linear array of hot springs along the West Coast. Spinel peridotite xenoliths entrained in the basanites and melanephelinites from the Kutch show low equilibrium temperatures (884–972°C). The estimated pressures obtained on the basis of the absence of both plagioclase and garnet in the xenoliths and by referring the temperatures to the West Coast geotherm is ∼ 15 kbar (40–45 km depth). The minimum heat flow of 60 to 70 mW/m2 has been computed for the Kutch xenolith (Bhujia hill), which is closely comparable to the oceanic geotherm. Xenolith studies from the West Coast and Kutch indicate that the SCLM beneath is strongly metasomatised although the style of metasomatism is different from that below the Dharwar Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, P.K., Thakur, N.K. and Negi, J.G. (1992) Magsat data and Curie depth below Deccan flood basalts (India), Pageoph, v.138, pp.678–691.

    Google Scholar 

  • Akela, J., Rao, P.S., McCalister, R.H., Boyd, F.R. and Meyer, H.O.A. (1979) Mineralogic studies on the diamondiferous kimberlte of Wajrakarur area, southern India. In: F.R. Boyd and H.O.A. Meyer (Eds.), Kimberlites, Diatremes and Diamonds. A.G.U. Washington, pp.172–177.

  • Anand, M. Gibson, S.A., Subbarao, K.V., Kelley, S.P. and Dickin, A.P. (2003) Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah Basin, Southern India. Jour. Petrol., v.44, pp.2139–2171.

    Article  Google Scholar 

  • Arur, M.G., Bains, P.S. and Jeevan Lal (1986) Anomaly map of Z component of the Indian subcontinent from magnetic satellite data. Proc. Indian Acad. Sci., v.94, pp.111–115.

    Google Scholar 

  • Auden, J.B. (1949) Dykes in western India. Trans. Nat. Inst. Sci. India, v.111, pp.123–157.

    Google Scholar 

  • Boyd, F.R. (1973) A pyroxene geotherm. Geochim. Cosmochim. Acta, v.37, pp.2533–2546.

    Article  Google Scholar 

  • Boyd, F.R. (1989) Composition and distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett., v.96, pp.15–26.

    Article  Google Scholar 

  • Boyd, F.R., Pearson, D.G., Nixon, P.H. and Mertzman, S.A. (1993) Low Ca garnet harzburgites from southern Africa: their relation to craton structure and diamond crystallization. Contrib. Mineral. Petrol., v.113, pp.352–366.

    Article  Google Scholar 

  • Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V. and Finger, L.W. (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol., v.128, pp.228–246.

    Article  Google Scholar 

  • Bowen, N.L. (1927) An analcite-rich rock from the Deccan Traps of India. Jour. Wash. Acad. Sci., v.17, pp.57–59.

    Google Scholar 

  • Chalapathi Rao, N.V. (2005) Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: key to the nature of the sub-continental lithospheric mantle beneath the Vindhyan Basin. Jour. Earth System Sci., v.115, pp.161–183.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Gibson, S.A., Pyle, D.M. and Dickin, A.P. (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, southern India. Jour. Petrol., v.45, pp.907–948.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Burgess, R., Anand, M. and Mainkar, D. (2007) 40Ar/39Ar dating of the Kodomali pipe, Bastar craton, India: A Pan African (491±11 Ma) age of diamondiferous kimberlite emplacement. Jour. Geol. Soc. India, v.69, pp.539–546.

    Google Scholar 

  • Choudary, V.S., Rau, T.K., Bhaskararao, K.S., Sridhar, M. and Sinha, K.K. (2007) Timmasamudram kimberlite cluster, Wajrakarur kimberlite field, Anantapur district, Andhra Pradesh. Jour. Geol. Soc. India, v.69, pp.597–610.

    Google Scholar 

  • Das Gupta, P.K. (1986) Picrite-borne mantle xenoliths from Cuddapah Basin, south India. Indian Jour. Earth Sci., v.13, pp.333–338.

    Google Scholar 

  • De, A. (1964) Iron titanium oxides and silicate minerals of the alkali olivine basalts tholeiitic and acidic rocks of the Deccan Trap series and their significance. Int. Geol. Cong. Rept. 22nd Session, pt. III, pp.126–138.

  • Deshpande, G.G. and Chakranarayan, A.B. (1973) Occurrence of lamprophyre near Murud-Janjira, Koloba district, Maharashtra. Curr. Sci., v.42, pp.404–405.

    Google Scholar 

  • Dessai, A.G. (2003) Granulite xenoliths from the western Dharwar Craton: constraints on the composition of the lower continental crust. Mem. Geol. Soc. India, no.53, pp.215–231.

  • Dessai, A.G., Knight, K. and Vaselli, O. (1999) Thermal structure of the lithosphere beneath the Deccan Trap along the western Indian continental margin: evidence from xenolith data. Jour. Geol. Soc. India, v.54, pp.585–598.

    Google Scholar 

  • Dessai, A.G., Rock, N.M.S. Griffin, B.J. and Gupta, D. (1990) Mineralogy and petrology of some xenolith bearing alkaline dykes associated with Deccan Magmatism, south of Bombay, India. European Jour. Mineral., v.2, pp.667–685.

    Google Scholar 

  • Dessai, A.G. and Vaselli, O. (1999) Petrography and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India. Mineral Mag., v.63, pp.703–722.

    Google Scholar 

  • Duraiswami, R.A. (2008) Petrography and geochemistry of ultramafic xenoliths in the alkaline rocks from Kutch, Gujarat and their bearing on the mantle beneath Kutch. Unpubl. Ph.D. thesis, University of Pune, pp.1–315.

  • Evensen, N.M., Hamilton, P.J. and O’Nions (1978) Rare earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, v.42, pp.1199–1212.

    Article  Google Scholar 

  • Finnerty, A.A. and Boyd, F.R. (1987) Thermobarometry for garnet peridotite xenoliths: a basis for upper mantle stratigraphy. In: P.H. Nixon (Ed.), Mantle Xenoliths. Wiley, Chichester, pp.381–402.

    Google Scholar 

  • Fraser, D. and Lawless, P. (1978) Paleogeotherms: implications of disequilibrium in garnet lherzolite xenoliths. Nature, v.273, pp.220–222.

    Article  Google Scholar 

  • Frey, F.A. and Prinz, M. (1978) Ultramafic inclusions from San Carols, Arizona: Petrologic and geochemical data bearing on the petrogenesis. Earth Planet. Sci. Lett., v.38, pp.129–176.

    Article  Google Scholar 

  • Ganguly, J. and Bhattacharya, P.K. (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: P.H. Nixon (Ed.), Mantle xenoliths. John Wiley and Sons Ltd., pp.249–265.

  • Gokarn, S.G., Rao, C.K. and Gupta, G. (1998) Magnetotelluric studies over the Dharwar craton. Ann. Conv. 35th Meeting of Int. Geophy. Union. Continental Margins of India-Evolution, processes and potentials. Abstr., pp.51–52.

  • Grand, S.P. (1994) Mantle shear structure beneath America and surrounding oceans. Jour. Geophys. Res., v.99, pp.11591–11621.

    Article  Google Scholar 

  • Griffin, W.L., O’Reilly, S.Y. and Ryan, C.G. (1999) The composition and origin of sub-continental lithospheric mantle. In: Y. Fei, C.M. Berka, and B.O. Mysen (Eds.) Mantle Petrology: Field Observations and High-pressure Experimentation: a Tribute to Francis R. (Joe) Boyd. Geochemical Soc. Spec. Publ. 6, pp.13–45.

  • Griffin, W.L. and O’Reilly, S.Y. (1987a) Is the continental Moho the crust-mantle boundary? Geology, v.15, pp.241–244.

    Article  Google Scholar 

  • Griffin, W.L. and O’Reilly, S.Y. (1987b) The composition of the lower crust and the nature of the continental Moho-xenolith evidence. P.H. Nixon (Ed). Wiley, Chichester, pp.413–430.

    Google Scholar 

  • Griffin, W.L, O’Reilly, S.Y., Natapove, L.M. and Ryan C.G. (2003) The evolution of lithospheric mantle beneath Kalahari Craton and its margins. Lithos, v.71, pp.215–242.

    Article  Google Scholar 

  • Griffin, W.L, Kobussen, A. F., Babu, E.V.S.S.K., O’Reilly, S.Y., Norris, R. and Sengupta, P. (2008) Contrasting lithospheric mantle across the suture between the Eastern and Western Dharwar Cratons, Central India. 9th International Kimberlite Conference Extended Abstract No.9IKC-A-00103, Frankfurt, Germany.

  • Guha, D., Das, S., Srikarni, C. and Chakraborty, S.K. (2005) Alkali basalt of Kachchh: its implication in the tectonic framework of Mesozoic of western India. Jour. Geol. Soc. India, v.66, pp.599–608.

    Google Scholar 

  • Harte, B. (1977) Rock nomenclature with particular relation to deformation and recrystallisation texture in olivine bearing xenoliths. Jour. Geol., v.85, pp.279–288.

    Article  Google Scholar 

  • Harte, B. and Hawkesworth, C.J. (1989) Mantle domains and mantle xenoliths. In: J. Ross (Ed.), Kimberlites and related rocks. Geol. Soc. Australia Spec. Publ. no.14 Blackwell, Perth, v.2, pp.649–686.

    Google Scholar 

  • Hooper, P.R. (1990) The timing of crustal extension and the eruption of continental flood basalts. Nature, v.345, pp.246–249.

    Article  Google Scholar 

  • Hutchison, R., Chambers, A.L., Paul, D.K. and Harris, P.G. (1975) Chemical variation among French xenoliths — evidence for mantle heterogeneity. Min. Mag., v.40, pp.153–170.

    Google Scholar 

  • Jacob, D.E. (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos, v.77, pp.295–316.

    Article  Google Scholar 

  • Kaila, K.L. Reddy, P.R. and Dixit, M.N. (1981) Deep crustal structure at Koyna indicated by Deep Seismic Soundings, Jour. Geol Soc India, v.22, pp.1–16.

    Google Scholar 

  • Karmalkar, N.R., Duraiswami, R.A., Sarma, P.K., Chauhan, S.P. and Jonnalagadda, M.K. (2007) Peeping into the Interior of the Western Continental Margin of India: A Xenolith based perspective, IAGR, Mem. 10, pp.143–155.

    Google Scholar 

  • Karmalkar, N.R., Griffin, W.L. and O’Reilly, S.Y. (2000) Ultramafic xenoliths from Kutch (NW India): Plume-related mantle samples? Int. Geol. Rev., v.42, pp.416–444.

    Article  Google Scholar 

  • Karmalkar, N.R. and Rege, S. (2002) Cryptic metasomatism in the upper mantle beneath Kutch: evidence from spinel lherzolite xenoliths. Curr. Sci., v.82, pp. 1157–1164.

    Google Scholar 

  • Karmalkar, N.R., Rege, S., Griffin, W.L. and O’Reilly, S.Y. (2005) Alkaline magmatism from Kutch, NW India: implications for Plume-lithosphere interaction. Lithos, v.81, pp.101–119.

    Article  Google Scholar 

  • Karmalkar, N.R. and Sarma, P.K. (2003) Characterization and origin of silicic and alkali rich glasses in the Upper mantle derived Spinel peridotite xenoliths from alkali basalts, Deccan Trap, Kutch, Northwest India. Curr. Sci., v.85, pp.386–392.

    Google Scholar 

  • Kent, R.W., Kelley, S.P. and Pringle, M.S. (1998) Mineralogy and 40Ar/39Ar geochronology of orangeites (Group II Kimberlites) from the Damodar Valley, eastern India. Mineral. Mag., v.62, pp.313–323.

    Article  Google Scholar 

  • Kent, R.W., Storey, M. and Saunders, A.D. (1992) Large igneous provinces: sites of plume impact or plume incubation? Geology, v.20, pp. 865–960.

    Google Scholar 

  • Kohler, T.P. and Brey, G. (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 Kb with applications Geochim. Cosmochim. Acta, v.54, pp.2375–2399.

    Article  Google Scholar 

  • Kramers, J.D. (1977) Lead and strontium isotopes in Cretaceous kimberlites and mantle derived xenoliths from southern Africa. Earth. Planet. Sci. Lett., v.34, pp.419–431.

    Article  Google Scholar 

  • Krishnamurthy, P., Pande, K. Gopalan, K. and Macdougall, J.D. (1989) Upper mantle xenoliths in alkali basalts related to Deccan Trap volcanism. Mem. Geol. Soc. India, no.10, pp.53–68.

  • Krishnamurthy, P., Pande, K. Gopalan, K. and Macdougall, J.D. (1999) Mineralogical and chemical studies on alkaline basaltic rocks of Kutch, Gujarat, India. In: K.V. Subbarao (Ed.), Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.757–783.

  • Lynn, M. (2005) The discovery of kimberlites in the Gulburga and Raichur districts of Karnataka. Proc. Group Discussion on kimberlites and related rocks of India. Geol. Soc. India, pp.48–49.

  • Mandal, P., Rastogi, B.K., Satyanarayana, H.V.S., Kousalya, M., Vijayraghavan, R., Satyamurty, C., Raju, I.P., Sarma, A.N.S. and Kumar, N. (2001) Characterization of the fault system for Bhuj earthquake of Mw 7.7. Tectonophysics, v.378, pp.105–121.

    Article  Google Scholar 

  • Marathe, T.S. (2006) Geological studies of diamond and other gemstones of Raipur district of Chhattisgarh by integrated, classical and remote sensing methods. Unpubl. Ph.D thesis, Barakatullah University, Bhopal, pp. 1–172.

    Google Scholar 

  • Meen, J.K., Ayers, J.C. and Fregeau, E.J. (1989) A model of mantle metasomatism by carbonated alkaline melts: trace-element and isotopic compositions of mantle source regions of carbonatite and other continental igneous rocks. In: K. Bell (Ed.), Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp. 464–499.

    Google Scholar 

  • Meissner, R., Luschen, E. and Fluh, E.R. (1983) Studies of continental crust by near vertical reflection methods: A Review. Phys. Earth Planet Int., v.31, pp.363–376.

    Article  Google Scholar 

  • Menzies, M. and Murthy, V.R. (1980) Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature, v.283, pp.634–636.

    Article  Google Scholar 

  • Mercier, J.C. and Nicolas, A. (1975) Texture and fabrics of upper mantle peridotites as illustrated by the xenoliths from basalts. Jour. Petrol., v.16, pp.454–487.

    Google Scholar 

  • Misra K.C., Anand, M. and Paul, D.K. (2008) Trace element signatures of an eclogite xenolith from a Southern Indian kimberlite. 9th international Kimberlite Conference, Frankfurt, Germany.

  • Mitchell, R.H. (2007) Potassic rocks from the Gondwana coalfields of India: closing Pandora’s box of petrological confusion. Jour. Geol. Soc. India, v.69, pp.505–512.

    Google Scholar 

  • Mukherjee, A.B. and Biswas, S.K. (1988) Mantle derived spinel lherzolite xenoliths from the Deccan Volcanic Province (India): implications for the thermal structure of the lithosphere underlying the Deccan Trap. Jour. Volcanol. Geothermal. Res., v.35, pp.269–276.

    Article  Google Scholar 

  • Murthy, Y.G.K, Rao, M.G., Misra, R. and Reddy, A.K. (1980) Kimberlite diatreme of AP, their assessment and the search for concealed bodies. Proc. Symp. Bombay, India QUA 26.

  • Negi, J.G., Agarwal, P.K. and Pandey, C.P. (1987) Large variation of Curie depth and lithospheric thickness beneath the Indian subcontinent and case for magnetothermometry. Geophy. Jour. Roy. Astr. Soc. v.88, pp.763–775.

    Google Scholar 

  • Nehru, C.E. and Reddy, A.K. (1989) Ultramafic xenoliths from Vajrakarur kimberlites, India. Geol. Soc. Australia Spec. Publ., v.14, pp.745–758.

    Google Scholar 

  • Nixon, P.H. (1987) Mantle xenoliths, Wiley, Chichester.

    Google Scholar 

  • Nixon, P.H. and Boyd, F.R. (1973) Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlite. In: P.H. Nixon (Ed.), Lesotho kimberlites, Cape and Transvaal. Maseru, pp.48–56.

  • Nixon, P.H. and Davis, G.R. (1987) Mantle xenolith perspectives. In: P.H. Nixon (Ed.), Mantle Xenoliths. John Wiley and Sons Ltd., pp.742–756.

  • Norman, M.D. (1998) Melting and metasomatism in the continental lithosphere: Laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib. Mineral Petrol., v.130, pp.240–255.

    Article  Google Scholar 

  • O’Reilly, S.Y. and Griffin, W.L. (1985) A xenolith derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics, v.111, pp.41–63.

    Article  Google Scholar 

  • O’Reilly, S.Y., Nicholls, I.A. and Griffin, W.L. (1989) Xenoliths and megacrysts of mantle origin. In: R.W. Johnson (Ed.), Intraplate volcanism in Eastern Australia and New Zealand, 408p.

  • O’Reilly, S.Y., Chen, D., Griffin, W.L. and Ryan, C.C. (1997) Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral. Mag., v.61, pp.257–269.

    Article  Google Scholar 

  • O’Reilly, S.Y., Griffin, W.L. and Ryan, C.G. (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton microprobe study. Contrib. Mineral. Petrol., v.109, pp.98–113.

    Article  Google Scholar 

  • Pandey, O.P. and Agrawal, P.K. (1999) Lithospheric mantle deformation beneath the Indian Cratons. Jour. Geol., v.107, pp.683–692.

    Article  Google Scholar 

  • Patel, S.C., Ravi, S., Thakur, S.S., Rao, T.K. and Subbarao, K.V. (2006) Eclogite xenoliths from Wajrakarur kimberlites, southern India. Mineral. Petrol., v.88, pp.363–380.

    Article  Google Scholar 

  • Paul, D.K., Crocket, J.H. and Nixon, P.H. (1979) Au, Pd and Pt contents of kimberlites and associated nodules. In: F.R. Boyd and H.O.A. Meyer (Eds.), Transactions American Geophysical Union Monographs, v.1, pp.272–279.

  • Paul, D.K., Nayak, S.S. and Pant, N.C. (2006) Indian kimberlites and related rocks: petrology and geochemistry. Jour. Geol. Soc. India, v.67, pp.328–355.

    Google Scholar 

  • Paul, D.K., Crocket, J.H., Reddy, T.A.K. and Pant, N.C. (2007) Petrology and geochemistry including Platinum group element abundances of the mesoproterozoic ultramafic (Lamproite) rocks of Krishna district, Southern India: Implications for source rock characteristics and petrogenesis. Jour. Geol. Soc. India, v.69, pp.577–596.

    Google Scholar 

  • Pearson, D.G., Canil, D. and Shirey, S.B. (2003) Mantle samples included in volcanic rocks: Xenoliths and diamonds: Treatise on Geochemistry, Elsevier, v.2, pp.171–275.

    Google Scholar 

  • Peslier, A.H., Reisberg, L.R., Ludden, J. and Francis, D. (2000) Os isotope systematics in mantle xenoliths: age constraints on the Canadian Cordillera lithosphere. Chem. Geol., v.166, pp.85–101.

    Article  Google Scholar 

  • Polet, J. and Anderson, D.L. (1995) Depth extent of cratons as inferred from tomographic studies. Geology, v.23, pp.205–208.

    Article  Google Scholar 

  • Proyer, A., Dachs, E. and McCammon, C. (2004) Pitfalls in geothermobarometry of eclogites: Fe+3 and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contrib. Mineral. Petrol., v.147, pp.305–318.

    Article  Google Scholar 

  • Rao, P.S. and Phadtare, P.N. (1966) Kimberlite pipe rocks of Wajrakarur, Anantpur district, Andhra Pradesh. Jour. Geol. Soc. India, v.7, pp.110–117.

    Google Scholar 

  • Rao, K.R.P., Rao, K.N., Dhakate, M.V. and Nayak, S.S. (2001) Petrology and mineralogy of mantle xenoliths of Wajrakarur and Narayanpet kimberlite fields. Andhra Pradesh, India. Geol. Surv. India Spec. Publ., v.58, pp.577–591.

    Google Scholar 

  • Rao, K.R.P., Reddy, T.A.K., Rao, K.V.S., Rao, K.S.B. and Rao, N.V. (1998) Geology, petrology and geochemistry of Narayanapet kimberlites in Andhra Pradesh and Karnataka. Jour. Geol. Soc. India, v.52, pp.663–676.

    Google Scholar 

  • Raval, U. and Veeraswamy, K. (1996) Densification in the Deep crust: A consequence of the passage of Indian Lithosphere over the Reunion Plume. Gondawana Geol. Mag. Spec., v.2, pp.393–404.

    Google Scholar 

  • Ravi, S., Patel, S.C. Reddy, T.A.K. and Rao, T.K. (2007) Mafic xenoliths and chromium spinel macrocrysts in kimberlites from southern India. IAGR Mem. No.10, pp.135–142.

  • Ray, R., Shukla, A.D., Sheth, H.C., Ray, J.S., Duraiswami, R.A., Vanderkluysen, L., Rautela, C.S. and Mallik, J. (2007) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: Direct evidence from xenoliths in dykes. Gondwana Res., v.13, pp.375–385.

    Google Scholar 

  • Reddy, T.A.K. (1986) Petrology and geochemistry of Wajrakarur kimberlites. Rec. Geol. Surv. India, v.115, pp.54–66.

    Google Scholar 

  • Reddy, T.A.K. (1987) Kimberlite and lampriote rocks of Wajrakarur, Andhra Pradesh. Jour. Geol. Soc. India, v.30, pp.1–12.

    Google Scholar 

  • Reddy, T.A.K., Sridhar, M., Ravi, S. and Chakravarthy, V. (2003) Petrography and geochemistry of the Krishna lamproite field, Andhra Pradesh. Jour. Geol. Soc. India, v.61, pp.131–140.

    Google Scholar 

  • Richardson, S.H., Gurney, J.J., Erlank, A.J., and Harris, J.W. (1984) Origin of diamonds in old enriched mantle. Nature, v.310, pp.198–202.

    Article  Google Scholar 

  • Rudnick, R.L. (1992) Xenolith-samples of the lower continental crust. In: D.M. Fountain, R.J. Arculus, and R.W. Kay (Eds.), Continental Crust. Elsevier, New York, pp.269–316.

    Google Scholar 

  • Rudnick, R.L., McDonough, W.F. and Chappell, B.W. (1993) Carbonatite metasomatism in northern Tanzanian mantle: petrography and geochemical characteristics. Earth Planet. Sci. Lett., v.114, pp.463–475.

    Article  Google Scholar 

  • Sarkar, D., Sain, K, Reddy, P.R., Catchings, R.D. and Mooney, W.D. (2007) Seismic reflection images beneath 2001, M = 7.7 Kutch (Bhuj) epicentral region western India. Geol. Soc. Amer. Spec. Paper 425, pp.319–325.

  • Schulze, D.J. (1989) Constraints on the abundance of eclogite in the upper mantle. Jour. Geophys. Res., v.94, pp.4205–4212.

    Article  Google Scholar 

  • Schmidberger, S.S. and Francis, D. (1999) Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos, v.48, pp. 195–216.

    Article  Google Scholar 

  • Shimizu, N. (1999) Young geochemical features in cratonic peridotites from southern Africa and Siberia. In: Y. Fei, C.M. Bertka and B. Mysen (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation. The Geochemical Soc., Houston, v.6, pp.47–55.

    Google Scholar 

  • Strickeisen, A. (1976) To each plutonic rock its proper name. Earth Sci. Rev., v.12, pp.1–33.

    Article  Google Scholar 

  • Taylor, L.A., Keller, R.A., Snyder, G.A., Wang, W.Y., Carlson, W.D., Hauri, E.H., McCandles, T., Kim, K.R., Sobovel, N.V. and Bezborodov, S.M. (2000) Diamonds and their mineral inclusions, and what they tell us: a detailed “pull apart” of a diamondiferous eclogite. Int. Geol. Rev., v.42, pp.959–983.

    Article  Google Scholar 

  • Venkatesan, T.R., Pande, K. and Gopalan, K. (1986) 40Ar-39Ar dating of Deccan basalts. Jour. Geol. Soc. India, v.27, pp.102–109.

    Google Scholar 

  • Washington, H.S. (1922) Deccan Traps and other plateau basalts. Bull. Geol. Soc. Amer., v.33, pp.765–803.

    Google Scholar 

  • Wilkinson, J.F.G. (1975) An Al-spinel ultramafic-mafic inclusion suite and high-pressure megacrysts in an analcimite and their bearing on basaltic magma fractionation at elevated pressures. Contrib. Mineral Petrol., v.53, pp.71–104.

    Article  Google Scholar 

  • Wilshire, H.G. and Shervais, J.W. (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the western United States. Phys. Chem. Earth., v.9, pp.257–272.

    Article  Google Scholar 

  • Witt-Eickschen, G. and Seck, H.A. (1987) Temperature history of sheared mantle xenoliths from the west Eifel, Germany: Evidence from mantle diapirism beneath the Rhenish Massif. Jour. Petrol., v.28, pp.475–493.

    Google Scholar 

  • Witt-Eickschen G. and Seck, H.A. (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite an improved version of an empirical geothermometer. Contrib. Mineral. Petrol., v.106, pp.431–439.

    Article  Google Scholar 

  • Xu X. O’Reilly, S.Y., Griffin, W.L. and Zhou, X. (2000) Genesis of young lithospheric mantle in southeastern China: a LAMICPMS trace element study. Jour. Petrol., v.41, pp.111–148.

    Article  Google Scholar 

  • Yaxley, G.M., Crawford, A.J. and Green, D.H. (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet. Sci. Lett., v.107, pp.305–317.

    Article  Google Scholar 

  • Zang, Y.S. and Tanimoto, T. (1993) High-resolution global upper mantle structure and plate tectonics. Jour. Geophys. Res., v.98, pp.9793–9823.

    Article  Google Scholar 

  • Zhang, M., Stephenson, P.J., O’Reilly, S.Y., McCulloch, M.T. and Norman, M. (2001) Petrogenesis and geodynamic implications of late Cenozoic basalts in North Queensland, Australia: trace element and Sr-Nd-Pb isotope evidence. Jour. Petrol., v.42, pp.685–719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Karmalkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmalkar, N.R., Duraiswami, R.A., Chalapathi Rao, N.V. et al. Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere. J Geol Soc India 73, 657–679 (2009). https://doi.org/10.1007/s12594-009-0051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0051-7

Keywords

Navigation