Advertisement

Journal of the Geological Society of India

, Volume 73, Issue 1, pp 13–35 | Cite as

Precambrian mafic magmatism in the Singhbhum craton, eastern India

  • Mihir K. Bose
Article

Abstract

The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored.

The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.

Keywords

Boninitic magma Siliceous high magnesian basalt (SHMB) Komatiite N-MORB Mantle characteristics Singhbhum craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharyya, A., Ray, S., Chaudhuri, B.K., Basu, S.K., Bhaduri, S.K. and Sanyal, A.K. (2006) Proterozoic rock suites along south Purulia Shear Zone, eastern India: Evidence for rift related setting. Jour. Geol. Soc. India, v.68, pp.1069–1086.Google Scholar
  2. Alvi, S.H. and Raza, M. (1992) Geochemical evidence for the volcanic arc tectonic setting of the Dhanjori volcanics, Singhbhum Craton, eastern India. Geol. Mag., v.129, pp.337–348.CrossRefGoogle Scholar
  3. Augé, T., Cocherie, A., Genna, A., Armstrong, R., Guerrot, C., Mukherjee, M.M. and Patra, R.N. (2003) Age of the Baula PGE mineralisation (Orissa, India) and its implications concerning the Sunghbhum Archaean nucleus. Precambrian Res., v.121, pp.85–101.CrossRefGoogle Scholar
  4. Banerjee, P.K. (1982) Stratigraphy, petrology and geochemistry of some Precambrian basic volcanics and associated rocks of Singhbhum and Keonjhar districts, Orissa. Mem. Geol. Surv. India, v.111, 54p.Google Scholar
  5. Basu, A.R., Ray, S.L., Saha, A.K. and Sarkar, S.N. (1981) Eastern Indian 3800 Million year-old crust and mantle differentiation. Science, v.212, pp.1502–1506.CrossRefGoogle Scholar
  6. Blackburn, W.H. and Srivastava, D.C. (1994) Geochemistry and tectonic significance of the Ongarbira metavolcanic rocks, Singhbhum district. India. Precambrian Res., v.67, pp.181–206.CrossRefGoogle Scholar
  7. Bose, M.K. (1958) On the dyke rocks of Champua, Keonjhar, Orissa. Quart. Jour. Geol. Min. Met. Soc. India, v.30, pp.125–139.Google Scholar
  8. Bose, M.K. (1982) Precambrian picritic lavas from Nomira, Keonjhar, eastern India. Curr. Sci., v.51, pp.677–682.Google Scholar
  9. Bose, M.K. (1990) Growth of the Precambrian continental crust - a study of the Singhbhum segment in eastern Indian shield In: S.M. Naqvi (Ed.), Precambrian continental crust and its economic resources. Develop. Precambrian Geol., Elsevier, v.8, pp.267–286.Google Scholar
  10. Bose, M.K. (1994) Sedimentation pattern and tectonic evolution of the Proterozoic Singhbhutm basin in the eastern Indian shield. Tectonophysics, v.231, pp.325–346.CrossRefGoogle Scholar
  11. Bose, M.K. (1999) Geochemistry of trhe metabasics and related rocks from the eastern part of the Proterozoic Singhbhum mobile belt, eastern India - Petrogenitic implications. Indian Jour. Geol., v.71, pp.213–234.Google Scholar
  12. Bose, M.K. (2000) Mafic - ultramafic magmatism in the eastern Indian craton - A review. Geol. Surv. India Spec. Publ., no.55, pp.227–258.Google Scholar
  13. Bose, M.K. (2008) Petrology and geochemistry of Proterozoic ‘Newer Dolerite’ and associated ultramafic dykes within Singhbhum granite pluton, eastern India. In: R. K. Srivastava, C. Sivaji and N.V. Chalapathi Rao (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology, Narosa Publishing House Pvt. Ltd., New Delhi, pp.413–445.Google Scholar
  14. Bose, M.K. and Chakraborti, M.K. (1981) Fossil marginal basin from the Indian shield: A model for evolution of Singhbhum Precambrian belt, eastern India. Geol. Rundschau, v.70, pp.504–518.CrossRefGoogle Scholar
  15. Bose, M.K. and Chakraborti, M.K. (1992) Geochemical changes in basalts across the Archaean-Proterozoic boundary - an evaluation of Dalma volcanics of Singhbhum crustal province, eastern India. Jour. Geol. Soc. India, v.43, pp.281–293.Google Scholar
  16. Bose, M.K., Chakraborti, M.K. and Saunders, A.D. (1989) Geochemistry of the lavas from Proterozoic Dalma volcanic belt, Singhbhum, eastern India. Geol. Rundchau, v.70, pp.504–518.CrossRefGoogle Scholar
  17. Bose M.K. and Goles, G.G. (1971) Chemical petrology of the ultramafic minor intrusions of Singhbhum, Bihar. Second. Symp. Upper Mantle Proj., NGRI, Hyderabad, pp.305–326.Google Scholar
  18. Cameron, E.N. (1980) Evolution of the lower critical zone, central sector, eastern Bushveld Complex and its chromitite deposits. Econ. Geol., v.75, pp.845–871.CrossRefGoogle Scholar
  19. Campbell, I.H., Grifith, R.W. and Hill, R.I. (1989) Melting in an Archaean mantle plume: head its basalts, tail its komatiites. Nature, v.339, pp.697–699.CrossRefGoogle Scholar
  20. Cattell, A.C. and Taylor, R.N. (1990) Archaean basic magmas, In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y., pp.11–39.Google Scholar
  21. Chakrabarti, B.K. (1998) A critical review of the Precambrian geology of India (Abstract). Krishnan Cent. Comm. Nat. Seminar, Calcutta, pp.26–28.Google Scholar
  22. Chakrabarti, B.K. (2000) Precambrian Geology of India - a synoptic review. Geol. Surv. India. Spl. Publ. No.55, pp.1–22.Google Scholar
  23. Chakraborti, M.K. and Bose, M.K. (1985) Evaluation of the tectonic setting of Precambrian Dalma volcanic belt eastern India, using trace element data. Precambrian Res., v.28, pp.253–268.CrossRefGoogle Scholar
  24. Condie, K.C. (1990) Geochemical characteristics of Precambrian basaltic greenstones. In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y. pp.11–39.Google Scholar
  25. Das, S., Bose, M.K. and Ghosh, A.K. (2001) Geochemical evaluation of the ultrabasic - basic bimodal volcanism in Kunchia sector of the Proterozoic Dalma volcanic belt, eastern India - Prospect of a komatiitic suite. Indian Jour. Geol., v.73, pp.227–240.Google Scholar
  26. Deb, G.K. (1999) Evolution of the Dhanjori volcanosedimentary rocks in the north Singhbhum fold belt: a reappraisal. Indian Minerals, v.53, pp.25–36.Google Scholar
  27. Deb, S. and Chakraborty, K.L. (1960) Trend of differentiation in the gabbro-anorthosite suite of rocks, Nausahi. Proc. Nat. Inst. Sci., v.26A, p.427.Google Scholar
  28. de Wit, M.J. and Ashwal, L.D. (1995) Greenstone belts, What are they? South African Jour. Geol., v.98(4), pp.505–520.Google Scholar
  29. Dick, H.J.B. (1989) Abyssal peridotites, very slow spreading ridge magmatism. In: A. D. Saunaders and M. J. Norry (Eds.), Magmatism in the ocean basins, Blackwell Sci. Publ., pp.71–105.Google Scholar
  30. Dunn, J.D. (1929) The geology of north Singhbhum including parts of Ranchi and Manbhum districts. Mem Geol. Surv. India, v.54, pp.1–66.Google Scholar
  31. Dunn, J.D. (1940) The stratigraphy of South Singhbhum. Mem. Geol. Surv. India, v.63(3), pp.303–369.Google Scholar
  32. Dunn, J.D. and Dey, A.K. (1942) The geology and petrology of eastern Singhbhum and surrounding areas. Mem. Geol. Surv. India, v.69, pt.2, pp.281–456.Google Scholar
  33. Ernst, R.E. and Buchan, K.L. (2003) Recognizing mantle plumes in the geological records. Ann. Review Earth Planet Sci., v.31, pp.69–523.Google Scholar
  34. Floyd, P.A. (1989) Geochemical features of intraplate oceanic plateau basalts. In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the ocean basins. Blackwell Sci. Publ., pp.215–230.Google Scholar
  35. Ghosh, K. and Ray, J. (1994) Some observations on geochemistry and tectonic setting of Dhanjori metavolcanics of the Eastern Indian shield. Indian Jour. Geol., v.66, pp.279–295.Google Scholar
  36. Gregorie, M., Moine, B.N. O’reilly, S.Y., Cottin, J.Y. and Girft, A. (2000) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline silicate and carbonate, (Kerguelen island, Indian ocean). Jour Petrol., v.41, pp.477–509CrossRefGoogle Scholar
  37. Gupta, A. and Basu, A. (2000) North Singhbhum Proterozoic mobile belt, Eastern India - a review. Geol. Surv. India. Specl. Publ., v.55, pp.195–226.Google Scholar
  38. Gupta, A., Basu, A. and Singh, S.K. (1985) Stratigraphy and petrochemistry of Dhanjori greenstone belt, eastern India. Quart. Jour. Geol. Min. Met. Soc. India, v.57, pp.248–263.Google Scholar
  39. Hall, R.P. and Hughes, D.J. (1990) Noritic magmatism. In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y. pp.88–110.Google Scholar
  40. Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of common volcanic rocks. Canad. Jour Earth Sci., v.8, pp.523–548.Google Scholar
  41. Iyengar, S.V.P. and Alwar, M.A. (1965) The Dhanjori eugeosyncline and its bearing on the stratigraphy of Singhbhum, Keonjhar and Mayurbhanj districts. D. N. Wadia Comm. Vol., Min. Geol. Met. Inst. India., pp.138–162.Google Scholar
  42. Iyengar, S.V.P. and Banerjee, S. (1964) Magmatic phases associated with the Precambrian tectonics of Mayurbhanj districts, Orissa, India. Rep. 22nd. Internat. Geol. Cong., v.10, pp.515–538.Google Scholar
  43. Iyengar, S.V.P. and Murthy, Y.G.K. (1982) The evolution of the Archaean-Proterozoic crust in parts of Bihar and Orissa, eastern India. Rec. Geol. Surv. India, v.112(3), pp.1–5Google Scholar
  44. Jahn, B.M. (1990) Early Precambrian basic rocks in China. In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y., pp.273–293.Google Scholar
  45. Jensen, L.S. (1976) A new cation plot for classifying subalkalic volcanic rocks. Ont. Divs. Mines. Misc. Paper No. 66, 22p.Google Scholar
  46. Kar, A. and Sarkar, N.K. (1989) Petrology of the calckalkaline igneous suties of Leslieganj - Khambi area, Palamau dist. Bihar. Indian Jour. Geol., v.61, pp.93–109.Google Scholar
  47. Krishnan, M. S. (1936) The dyke rocks of Keonjhar state, Bihar and Orissa. Rec. Geol. Surv. India, v.71,pt.1, pp.105–120.Google Scholar
  48. Kumar, A. and Ahmad, T. (2007) Geochemistry of mafic dykes in parts of Chotanagpur gneissic complex: Petrogenetic and tectonic implications. Geochem. Jour., v.41, pp.173–186.Google Scholar
  49. Le Bas, M.J. and Streckeisen, A.L. (1991) The IUGS systematics of igneous rocks. Jour. Geol. Soc. Lond., v.48, pp.826–833.Google Scholar
  50. Le Maitre, R.W. (1989) A classification of igneous rocks and glossary of terms. Blackwell Sci, Publ., Oxford.Google Scholar
  51. Mahadevan, T.M. (2002) Geology of Bihar and Jharkhand. Geological Society of India, Bangalore, 563p.Google Scholar
  52. Maitra, M. and Bose, M.K. (2005) Petrogenesis of komatiitic ultrabasics of Dalma volcanic belt, Singhbhum - a geochemical model. (Abstract volume). Workshop Igneous Petrology, 21st Century Prespective. Calcutta Univ., pp.18–19.Google Scholar
  53. Maitra, M. and Bose, M.K. (2007) Changing style of magma genesis and evolution of komatiitic ultrabasics in Dalma volcanic belt of Proterogoic Singhbhum basin - a geochemical approach. In: J. Ray and C. Bhattacharya (Eds.), Igneous Petrology: 21st Century Perspective, Allied Publ. Pvt. Ltd., New Delhi, pp.73–90Google Scholar
  54. Mall, A.P., Ghosh, N. C., Thakur, B.K. and Singh, N.K. (1989) Geochemistry of metabasites and their significance in the crustal evolution of Proterozoic Chhotanagpur Gneissic terrain. Indian Minerals, v.43, pp.291–302.Google Scholar
  55. Mallick, A.K. and Sarkar, A. (1994) Geochronology and geochemistry of mafic dykes from Precambrians of Keonjhar, Orissa. Indian Minerals, v.48, pp.3–24.Google Scholar
  56. Mandal, N., Mitra, A.K., Misra, S. and Chakraborty, C. (2006) Is the outcrop topology of dolerite dykes of Precambrian Singhbhum craton fractal? Jour. Earth Sci. Sys., v.115, pp.643–660.CrossRefGoogle Scholar
  57. McKenzie, D. and Bickle, M.J. (1988) The volume and composition of melt generated by extension of the lithosphere. Jour. Petrol., v.29, pp.625–679.Google Scholar
  58. Mondal, S.K., Ripley, E.M., Li, C. and Frei, R. (2006) The genesis of Archaean chromitites from Nuasahi and Sukinda massifs in the Singhbhum craton, India. Precambrian Res., v.148, pp.45–66.CrossRefGoogle Scholar
  59. Mondal, S.K., Frei, R. and Ripley, E.M. (2007) Os isotope systematics of Mesoarchaean chromitite-PGE deposits in the Singhbhum Craton (India): Implications for the evolution of lithospheric mantle. Chem. Geol., v.244, pp.391–408.CrossRefGoogle Scholar
  60. Mondal, S.K. (2007) PGE distributions in Mesoarchean chromitites and mafic-ultramafic rocks in the Singhbhum craton (India): Evidence for presence of a subchondritic source mantle domain. Abst., Geochim. Cosmochim. Acta, GOLDSCHMIDT 2007 (Cologne).Google Scholar
  61. Moorbath, S., Taylor, P.N. and Jones, N.W. (1986) Dating the oldest terrestrial rocks - fact and fiction. Chem. Geol., v.57, pp.63–86.CrossRefGoogle Scholar
  62. Mukhopadhyay, D. (1984) The Singhbum shear zone and its place in the evolution of the Precambrian mobile belt of north Singhbhum. Indian Jour. Earth. Sci., Sem. Vol., pp.205–212.Google Scholar
  63. Mukhopadhyay, D. (1988) Precambrian of the eastern Indian shield - perspective and prospect. Indian Jour. Earth Sci., v.3, pp.208–219.Google Scholar
  64. Murton, B.J. (1989) Tectonic conrols on boninite genesis In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the Ocean basin. Blackwell, Sci. Publ., pp.347–377.Google Scholar
  65. Naqvi, S.M. and Rogers, J.J.W. (1987) Precambrian geology of India. Oxford Univ. Press, Oxford, 223p.Google Scholar
  66. Nath, S. and Bhattacharyya, C. (2006) Petrology and geochemistry of amphibolites around Kuilapal, W. Bengal, eastern India. Jour. Geol. Soc. India, v.67, pp.748–758.Google Scholar
  67. Page, M.L. and Schmulia, M.L. (1981) The proximal volcanic environment of the Scotia nickel deposit. Econ. Geol., v.76, pp.1469–1479.CrossRefGoogle Scholar
  68. Pearce, J.A. and Perkinson, I.J. (1997) Trace element model for mantle melting: application to volcanic arc petrogenesis. Geol. Soc. London Spec. Publ. Classic., v.76, pp.373–403.CrossRefGoogle Scholar
  69. Ray, J.S., Das, S. and Bhattacharyya, P. (2006) Malangtoli lava of the eastern Indian shield: some aspects of major element geochemistry and tectonic affiliation. Indian Minerals, v.60, pp.55–68.Google Scholar
  70. Raza, M., Alvi, S.H. and Abu-Hamatter, Z.S.H. (1995) Geochemistry and tectonic significance of Ongarbira volcanics, Singhbhum craton, eastern India. Jour. Geol. Soc. India, v.45, pp.643–652.Google Scholar
  71. Roberts, S., Foster, R.P. and Nesbitt, R.W. (1990) Mineralisation associated with early Precambrian basic magmatism. In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y., pp.157–188.Google Scholar
  72. Roy, A., Sarkar, A., Jeykumar, S., Aggarawal, S.K. and Ebihara, M (2002a) Mid-Proterozoic plume related thermal event in eastern Indian craton: Evidence from trace elements, REE geochemistry and Sm-Nd isotopic systematics of basicultrabasic intrusion from Dalma volcanic belt. Gondwana Res., v.5, pp.133–146.CrossRefGoogle Scholar
  73. Roy, A.K., Sarkar, A., Jeykumar, S., Aggarawal, S.K. and Ebihara, M. (2002b) Sm-Nd age and mantle source characteristics of the Dhanjori volcanic rocks, eastern India. Geochem. Jour., v.36, pp.503–518.Google Scholar
  74. Roy, A., Sarkar, A., Jeyakumar, S., Aggarawal, S.K. Ebihara, M. and Santosh, H. (2004) Late Archaean mantle metasomatism below estern Indian craton: Evidence from trace elements, REE geochemistry and Sr - Nd - O isotope systematics of ultramafic dykes. Proc. Indian Acad. Sci. (Earth Planet. Sci). v.113, pp.649–665.Google Scholar
  75. Saha, A.K. (1949) Dolerite dykes and sills around Chaibasa. Quart. Jour. Geol. Min. Met. Soc. India, v.21, pp.77–83.Google Scholar
  76. Saha, A.K. (1994) Crustal evolution of Singhbhum, North Orissa, eastern India. Mem. Geol. Soc. India, Bangalore, No.27, 341p.Google Scholar
  77. Saha, A.K. and Ray, S.L. (1984) Early-middle Archaean crustal evolution of the Singhbhum craton. Indian Jour. Earth. Sci. (Special Issue), pp.1–18.Google Scholar
  78. Saha, A.K., Bose, M.K., Sankaran, A.V. and Bhattacharyya, T.K. (1972) Petrology and geochemistry of the ultramafic intrusion of Keshargaria, Singhbhum, Bihar. Jour. Geol. Soc. India, v.13, pp.113–121.Google Scholar
  79. Saha, A.K., Sankaran, A.V. and Bhattacharyya, T.K. (1973) Geochemistry of Newer Dolerite suite of intrusions within Singhbhum granite. Jour. Geol. Soc. India, v.14, pp.324–346.Google Scholar
  80. Sahu, N.K. and Mukherjee, M.M. (2001) Spinifex textured komatiite from Badampahar-Gorumahisani Schist belt, Mayurbhanj Dist., Orissa. Jour. Geol. Soc. India, v.57, pp.529–534.Google Scholar
  81. Sarkar, N.K., Panigrahi, D., Ghosh, S.N., Mallik, A.K. and Shome, S. (2003) A note on the incidence of Gold-PGM in the breceia zone of Katpal chromite quarry. Sukinda ultramafic complex, Denkanal district. Orissa. Indian Minerals, v.57, pp.85–92.Google Scholar
  82. Sarkar, S.C., Gupta, A. and Basu, A. (1992) North Singhbhum Proterozoic mobile belt, eastern India: Its character, evolution and metallogeny. In: S. C. Sarkar (Ed.), Metalogeny related to tectonics of Proterozoic mobile belt, Oxford. IBH Publ., New Delhi, pp.271–304.Google Scholar
  83. Sarkar, S.N., Saha, A.K. and Miller, J.A. (1969) Geochronology of the Precambrian rocks of Singhbhum and adjacent regions, eastern India. Geol. Mag., v.106(1), pp.15–45.CrossRefGoogle Scholar
  84. Sengupta, S., Corfu, F., Monutt, R.H. and Paul, D.K. (1996) Mesoarchaean crustal history of the eastern Indian craton: Sm-Nd and U-Pb isotopic evidence. Precambrian Res., v.77, pp.17–22.CrossRefGoogle Scholar
  85. Sengupta, S., Acharyya, S.K. and Deshmeth, J.B. (1997) Geochemistry of Archaean volcanic rocks from Iron Ore Supergroup, Singhbhum eastern India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.106, pp.327–342.Google Scholar
  86. Sharma, M., Basu, A.R. and Ray, S.L. (1994) Sm-Nd isotopic and geochemical study of the Archaean tonalite - amphibolite association from eastern Indian craton. Contrib. Mineral. Petrol., v.117, pp.45–55.CrossRefGoogle Scholar
  87. Sinha, J.K. and Bose, M.K. (1977) Petrology of the anorthosite suite east of Bela district, Gaya, Bihar. Jour. Geol. Soc. India, v.18(3), pp.129–139.Google Scholar
  88. Smith, T.E. (1992) Volcanic rocks of early Proterozoic greenstone belts In: K.C. Condie (Ed.), Proterozoic crustal evolution, Develop. Precambrian Geol., v.10, Elsevier, pp.7–54.Google Scholar
  89. Sun, S.-S. and Mcdonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: A.D. Saumders and M.J. Norry (Eds.), Magmatism in the ocean basins, Blackwell Sci. Publ., pp.313–346.Google Scholar
  90. Tarney, J., Saunders, A.D. and Weaver, S.D. (1977) Geochemistry of volcanic rocks from the island arcs and marginal basins of the Scotia Arc region. In: M. Talwani and W.C. Pitman (Eds.), Island arcs, Deep sea trenches and backarc basins. Amer. Geophys. Union, pp.367–377.Google Scholar
  91. Taylor, S.R. and Mclennan, S.M. (1987) The continental crust: Its composition and evolution. Blackwell, Oxford, 312p.Google Scholar
  92. Thurston, P.C. (1990) Early Precambrian basic rocks of the Canadian shield In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y., pp.221–247.Google Scholar
  93. Viswanathan, S. and Sankaran, A.V. (1973) Discovery of a komatiite in the Precambrian of India and its significance and nature of Archaean volcanism and of the early crust in the Indian shield. Curr. Sci., v.42, pp.266–269.Google Scholar
  94. Weaver, B.L. (1990) Early Precambrian rocks in India In: R.P. Hall and D.J. Hughes (Eds.), Early Precambrian basic magmatism, Chapman and Hall, N.Y., pp.339–351.Google Scholar
  95. Wilson, M. (1989) Igneous Petrogenesis. Unwyn Hyman, 466p.Google Scholar

Copyright information

© Geological Society of India 2009

Authors and Affiliations

  • Mihir K. Bose
    • 1
  1. 1.Department of GeologyPresidency CollegeKolkataIndia

Personalised recommendations