Skip to main content
Log in

Existence of Solutions for an Impulsive p-laplacian Equation with Nonresonance Conditions

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with a nonresonance problem given in the shape of a nonlinear impulsive differential equation with Dirichlet boundary conditions. After giving a characterization of the first eigenvalue \(\lambda _1\) for an intermediary eigenvalue problem with some properties related to \(\lambda _1\) such as simplicity, isolation, strict monotonicity and that the first eigenfunction \(u_1\) which correspond to \(\lambda _1\) has a constant sign, also by the characterization of the second eigenvalue \(\lambda _2\) and its strictly partial monotonicity, we prove existence of at least one solution to our problem by using variational approach. Finally, we give a few examples to illustrate our main theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript has no associate data.

References

  1. Wang, W., Shen, J.: Eigenvalue problems of second order impulsive differential equations. Comput. Math. Appl. 62(1), 142–150 (2011)

    Article  MathSciNet  Google Scholar 

  2. Faydaoğlu, Ş, Guseinov, G.S.: An expansion result for a Sturm–Liouville eigenvalue problem with impulse. Turk. J. Math. 34(3), 355–366 (2010)

    MathSciNet  Google Scholar 

  3. Bairamov, E., Erdal, I., Yardimci, S.: Spectral properties of an impulsive Sturm–Liouville operator. J. Inequal. Appl. 2018, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  4. Kruger-Thiemer, E., Eriksen, S.P.: Mathematical model of sustained-release preparations and its analysis. J. Pharm. Sci. 55(11), 1249–1253 (1966)

    Article  Google Scholar 

  5. Nie, L., Teng, Z., Torres, A.: Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Anal. Real World Appl. 13(4), 1621–1629 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ruan, J., Lin, W.: Chaos in a class of impulsive differential equation. Commun. Nonlinear Sci. Numer. Simul. 4(2), 165–169 (1999)

    Article  MathSciNet  Google Scholar 

  7. Fen, M.O., Tokmak Fen, F.: Replication of period-doubling route to chaos in impulsive systems. Electron. J. Qual. Theory Differ. Equ. 2019(58), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  8. Nenov, S.I.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal. 36(7), 881–890 (1999)

    Article  MathSciNet  Google Scholar 

  9. Georgescu, P., Moroşanu, G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190(1), 790–803 (2007)

    MathSciNet  Google Scholar 

  10. Lakshmikantham, V., Simeonov, P.S., et al.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989)

    Book  Google Scholar 

  11. O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations, vol. 398. Science & Business Media, Dordrecht (1997)

    Book  Google Scholar 

  12. Dong, Y., Zhou, E.: An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations. J. Math. Anal. Appl. 197(3), 875–889 (1996)

    Article  MathSciNet  Google Scholar 

  13. Wang, M., Xu, F., Tang, Q.: The positive solutions to the boundary value problem of a nonlinear singular impulsive differential system. J. Nonlinear Funct. Anal. 2022, 1–12 (2022)

    Google Scholar 

  14. Fen, F.T., Karaca, I.Y.: Existence of positive solutions for nonlinear second-order impulsive boundary value problems on time scales. Mediterr. J. Math. 13, 191–204 (2016)

    Article  MathSciNet  Google Scholar 

  15. Wang, L., Shu, X.-B., Cheng, Y., Cui, R.: Existence of periodic solutions of second-order nonlinear random impulsive differential equations via topological degree theory. Res. Appl. Math. 12, 100215 (2021)

    Article  MathSciNet  Google Scholar 

  16. Chen, P., Tang, X.: Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems. Appl. Math. Comput. 218(24), 11775–11789 (2012)

    MathSciNet  Google Scholar 

  17. Bogun, I.: Existence of weak solutions for impulsive p-Laplacian problem with superlinear impulses. Nonlinear Anal. Real World Appl. 13(6), 2701–2707 (2012)

    Article  MathSciNet  Google Scholar 

  18. Sun, J., Chen, H.: Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems. Nonlinear Anal. Real World Appl. 11(5), 4062–4071 (2010)

    Article  MathSciNet  Google Scholar 

  19. Bouabdallah, M., Chakrone, O., Chehabi, M.: Eigenvalue problem of an impulsive differential equation governed by the one-dimensional p-Laplacian operator. Proyecciones 41(1), 217–247 (2022)

    Article  MathSciNet  Google Scholar 

  20. Bouabdallah, M., Chakrone, O., Chehabi, M.: Infinitely many solutions for a second order impulsive differential equation with p-Laplacian operator. Mem. Differ. Equ. Math. Phys. 86, 15–30 (2022)

    MathSciNet  Google Scholar 

  21. Drábek, P., Langerová, M.: Quasilinear boundary value problem with impulses: variational approach to resonance problem. Bound. Value Probl. 2014(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  22. Graef, J.R., Heidarkhani, S., Kong, L.: Nontrivial solutions of a Dirichlet boundary value problem with impulsive effects. Dyn. Syst. Appl 25, 335–350 (2016)

    MathSciNet  Google Scholar 

  23. Caristi, G., Ferrara, M., Heidarkhani, S., Tian, Y.: Nontrivial solutions for impulsive Sturm–Liouville differential equations with nonlinear derivative dependence. Differ. Integr. Equ. 30(11–12), 989–1010 (2017)

    MathSciNet  Google Scholar 

  24. Heidarkhani, S., Moradi, S., Caristi, G.: Variational approaches for a p-Laplacian boundary-value problem with impulsive effects. Bull. Iran. Math. Soc. 44, 377–404 (2018)

    Article  MathSciNet  Google Scholar 

  25. Heidarkhani, S., Ferrara, M., Salari, A., Caristi, G.: Multiple solutions for a class of perturbed second-order differential equations with impulses. Bound. Value Problems 2016, 1–16 (2016)

    MathSciNet  Google Scholar 

  26. Mohammed, B., Omar, C., Fatiha, D., Okacha, D.: Eigenproblem for p-Laplacian and nonlinear elliptic equation with nonlinear boundary conditions. Acta Math. Sin. (Engl. Ser.) 31(4), 659 (2015)

    Article  MathSciNet  Google Scholar 

  27. Anane, A., Tsouli, N.: On a nonresonance condition between the first and the second eigenvalues for the p-Laplacian. Int. J. Math. Math. Sci. 26(10), 625–634 (2001)

    Article  MathSciNet  Google Scholar 

  28. Anane, A., Chakrone, O.: Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propres du p-Laplacien. Ann. Fac. Sci. Toulouse Math. 9(1), 5–30 (2000)

    Article  MathSciNet  Google Scholar 

  29. Tao, W., Li, Y.: Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion. J. Differ. Equ. 268(11), 6872–6919 (2020)

    Article  MathSciNet  Google Scholar 

  30. Xu, T., Jin, Y.-C.: Improvement of a projection-based particle method in free-surface flows by improved Laplacian model and stabilization techniques. Comput. Fluids 191, 104235 (2019)

    Article  MathSciNet  Google Scholar 

  31. Moussa, M., Anane, A., Chakrone, O.: Spectrum of one dimensional p-Laplacian operator with indefinite weight. Electron. J. Qual. Theory Differ. Equ. 2002(17), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  32. Meng, G., Yan, P., Zhang, M.: Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight. Mediterr. J. Math. 7(2), 225–248 (2010)

    Article  MathSciNet  Google Scholar 

  33. Agarwal, R.P., Lü, H., O’Regan, D.: Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 266(2), 383–400 (2002)

    Article  MathSciNet  Google Scholar 

  34. Zeidler, E.: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New York (2013)

    Google Scholar 

  35. Coffman, C.V.: A minimum-maximum principle for a class of non-linear integral equations. J. Anal. Math. 22, 391–419 (1969)

    Article  MathSciNet  Google Scholar 

  36. Allegretto, W., Xi, H.Y.: A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal. 32(7), 819–830 (1998)

    Article  MathSciNet  Google Scholar 

  37. Ljusternik, L., Schnirelmann, L., Kravtchenko, J.: Méthodes Topologiques dans les Problèmes Variationnels. Hermann (1934)

Download references

Acknowledgements

The authors thank the reviewers for attentively reading the paper, and for giving pertinent remarks and precious ideas to enhance the results as well as the presentation of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the research was carried out in cooperation with the same accountability. All authors have seen and approved the final paper.

Corresponding author

Correspondence to Mohamed Bouabdallah.

Ethics declarations

Conflict of interest

The authors indicate that they have no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouabdallah, M., Chakrone, O. & Chehabi, M. Existence of Solutions for an Impulsive p-laplacian Equation with Nonresonance Conditions. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00660-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00660-z

Keywords

Navigation