Skip to main content
Log in

Nonconstant Steady States of a Rumor Propagation Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper reports some qualitative results of a diffusive rumor propagation model with homogeneous no-flux boundary conditions. Firstly, the permanence is exhibited of the spatiotemporal rumor model. Then the boundedness of solutions, the nonexistence and existence of the non-constant steady states of the spatial rumor propagation model are explored. It is shown that the non-constant steady states may exist when the migration rate of the rumor-infected individuals is fixed and the migration rate of the rumor-susceptible individuals is large. By contrast, there are no non-constant steady states as the migration rates of the rumor-susceptible individuals and the rumor-infected individuals are fixed and large, respectively. These qualitative investigation results enhance the theoretical study of the spatial propagation rumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article or available upon request.

References

  1. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204, 1118 (1964)

    Article  Google Scholar 

  2. Daley, D.J., Kendall, D.G.: Stochastic rumours. IMA J. Appl. Math. 1, 42–55 (1965)

    Article  MathSciNet  Google Scholar 

  3. Zanette, D.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64, 050901 (2001)

    Article  Google Scholar 

  4. Dong, S., Deng, Y.B., Huang, Y.C.: SEIR model of rumor spreading in online social network with varying total population size. Commun. Theor. Phys. 68, 545 (2017)

    Article  Google Scholar 

  5. Zan, Y.L.: DSIR double-rumors spreading model in complex networks. Chaos Solitons Fractals 110, 191–202 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao, H.Y., Zhu, L.H.: Dynamic analysis of a reaction-diffusion rumor propagation model. Int. J. Bifurc. Chaos 26, 1650101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huo, L.A., Jiang, J.H., Gong, S.X., et al.: Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event. Physica A 450, 228–240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, K.Z., Zhu, G.H., Ma, Z.J., et al.: Dynamic stability of an SIQS epidemic network and its optimal control. Commun. Nonlinear Sci. Numer. Simul. 66, 84–95 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, H., Zhang, Z.J., Fang, Y.B.: Containment of rumor spread by selecting immune nodes in social networks. Math. Biosci. Eng. 18, 2614–2631 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Piqueira, J.R.: Rumor propagation model: an equilibrium study. Math. Probl. Eng. 2020, 631357 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Singh, J.: A new analysis for fractional rumor spreading dynamical model in a social network with Mittag–Leffler law. Chaos 29, 013137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W.K., Zhang, H., Georgescu, P., et al.: Taming obstinate spreaders: the dynamics of a rumor spreading model incorporating inhibiting mechanisms and attitude adjustment. Comput. Appl. Math. 40, 125 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Musa, S., Fori, M.: Mathematical model of the dynamics of rumor propagation. J. Appl. Math. Phys. 7, 1289–1303 (2019)

    Article  Google Scholar 

  14. Li, J.R., Jiang, H.J., Yu, Z.Y., et al.: Dynamical analysis of rumor spreading model in homogeneous complex networks. Appl. Math. Comput. 359, 374–385 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J.L., Jiang, H.J., Hu, C., et al.: Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism. Chaos Solitons Fractals 153, 111464 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, L.H., Huang, X.Y., Liu, Y., Zhang, Z.D.: Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion propagation model. J. Math. Anal. Appl. 493, 124539 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, M.X., Wu, R.C., Xu, Y.C.: Dynamics of a depletion-type Gierer–Meinhardt model with Langmuir–Hinshelwood reaction scheme. Discrete Contin. Dyn. Syst. B 27, 2275–2312 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, M.X., Wu, R.C.: Dynamics of diffusive nutrient-microorganism model with spatially heterogeneous environment. J. Math. Anal. Appl. 511, 126078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, J., Shi, J.P.: Pattern formation in a general glycolysis reaction-diffusion system. IMA J. Appl. Math. 80, 1703–1738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cai, Y.L., Zhao, C.D., Wang, W.M.: Spatiotemporal complexity of a Leslie–Gower predator–prey model with the weak Allee effect. J. Appl. Math. 2013, 535746 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghergu, M.: Non-constant steady-state solutions for Brusselator type systems. Nonlinearity 21, 2331–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, G.D., Chang, Z.B., Meng, X.Z., et al.: Optimality for a diffusive predator–prey system in a spatially heterogeneous environment incorporating a prey refuge. Appl. Math. Comput. 384, 125385 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response,. Nonlinear Anal.: RWA 11, 3711–3721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, M.X., Wu, R.C., Wang, X.H.: Non-constant steady states and Hopf bifurcation of a species interaction model. Commun. Nonlinear Sci. Numer. Simul. 116, 106846 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pang, Y.H.P., Wang, M.X.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 1, 135–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11971032, 12002297), and funded by China Postdoctoral Science Foundation (No. 2021M701118).

Author information

Authors and Affiliations

Authors

Contributions

Mengxin Chen: Formal analysis, Writing-original draft, Review & editing; Ranchao Wu: Supervision, Methodology, Revision; Qianqian Zheng: Software, Review & editing.

Corresponding author

Correspondence to Ranchao Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wu, R. & Zheng, Q. Nonconstant Steady States of a Rumor Propagation Model. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00641-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00641-2

Keywords

Navigation