Skip to main content

Advertisement

Log in

Lebeau–Robbiano Inequality for Heat Equation with Dynamic Boundary Conditions and Optimal Null Controllability

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The paper deals with time and norm optimal control problems for the heat equation with dynamic boundary conditions in the context of the null controllability. More precisely, we answer an open question left in our previous paper (Boutaayamou et al., in Math Methods Appl Sci 45:1359–1376, 2021). To do so, we first prove a new Lebeau–Robbiano spectral inequality using a logarithmic convexity inequality, then an observability inequality on any set of positive measure. This plays a relevant role in proving the existence and uniqueness of optimal null controls. Finally, the connection between time and norm optimal null controls is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait Ben Hassi, E.M., Chorfi, S.E., Maniar, L. and Oukdach, O.: Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions, Evol. Equ. Control Theory, 10(4), 837-859 (2020)

  2. Apraiz, J., Escauriaza, L., Wang, G.S., Zhang, C.: Observability inequalities and measurable sets. J. Eur. Math. Soc. 16, 2433–2475 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Aissa, A., Zouhair, W.: Qualitative properties for the \(1-D\) impulsive wave equation: controllability and observability. Quaest. Math. (2021). https://doi.org/10.2989/16073606.2021.1940346

  4. Borzabadi, A.H., Kamyad, A.V., Farahi, M.H.: Optimal control of the heat equation in an inhomogeneous body. J. Appl. Math. Comput. 15, 127–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boutaayamou, I., Chorfi, S.E., Maniar, L., Oukdach, O.: The cost of approximate controllability of heat equation with dynamic boundary conditions. Port. Math. 78, 65–99 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boutaayamou, I., Maniar, L., Oukdach, O.: Time and norm optimal controls for the heat equation with dynamical boundary conditions. Math. Methods Appl. Sci 45, 1359–1376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boutaayamou, I., Maniar, L., Oukdach, O.: Stackelberg–Nash null controllability of heat equation with general dynamic boundary conditions. Evol. Equ. Control Theory 11, 1285–1307 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, N., Wang, Y., Yang, D.: Time-varying bang-bang property of time optimal controls for heat equation and its application. Control Syst. Lett. 112, 18–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherfils, L., Miranville, A.: On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math. 54, 89–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chorfi, S. E., El Guermai, G., Maniar, L., Zouhair, W.: Finite-time stabilization and impulse control of heat equation with dynamic boundary conditions, to appear in J. Dyn. Control Syst. (2022)

  11. Chorfi, S.E., El Guermai, G., Maniar, L., Zouhair, W.: Impulsive null approximate controllability for heat equation with dynamic boundary conditions. Math. Control Rel. Fields (2022). https://doi.org/10.3934/mcrf.2022026

  12. Chorfi, S.E., El Guermai, G., Maniar, L., Zouhair, W.: Logarithmic convexity and impulsive controllability for the one-dimensional heat equation with dynamic boundary conditions. IMA J. Math. Control Inf. (2022). https://doi.org/10.1093/imamci/dnac013

  13. Delfour, M.C., Zoleosio, J.P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MathSciNet  Google Scholar 

  14. Engel, K. J., Nagel, R.: One-parameter semigroups for linear evolution equations, Semigr. Forum, 63 (2001)

  15. Farkas, Z.J.Z., Hinow, P.: Physiologically structured populations with diffusion and dynamic boundary conditions. Math. Biosci. Eng. 8, 503–513 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fattorini, H.O.: Time and norm optimal controls: a survey of recent results and open problems. Acta Math. Sci. 31, 2203–2218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gal, C.G.: The role of surface diffusion in dynamic boundary condition: where do we stand. Milan J. Math. 83, 237–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11, 457–480 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Goldstein, G.R., Goldstein, J.A., Guidetti, D., Romanelli, S.: Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary. Ann. Mat. Pur. Appl. 199, 127–146 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khoutaibi, A., Maniar, L.: Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evol. Equ. Control Theory 9, 535–559 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khoutaibi, A., Maniar, L., Oukdach, O.: Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. -S 15, 1525 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lalvay, S., Padilla-Segarra, A., Zouhair, W.: On the existence and uniqueness of solutions for non-autonomous semi-linear systems with non-instantaneous impulses, delay, and non-local conditions, Miskolc. Math. Notes 23, 295–310 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Lebeau, G., Robbiano, L.: Contrôle exact de léquation de la chaleur. Commun. Partial Differ. Equ. 20, 335–356 (1995)

    Article  MATH  Google Scholar 

  24. Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141, 297–329 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leiva, H., Zouhair, W., Cabada, D.: Existence, uniqueness and controllability analysis of Benjamin-Bona-Mahony equation with non instantaneous impulses, delay and non local conditions. J. Math. Control. Sci. Appl. 7, 91–108 (2021)

    Google Scholar 

  26. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems, Birkhauser (1995)

  27. Liu, S., Liu, D., Wang, G.: Some optimal control problems of heat equations with weighted controls. Bound. Value Probl. 2017, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maniar, L., Meyries, M., Schnaubelt, R.: Null controllability for parabolic equations with dynamic boundary conditions of reactive-diffusion type. Evol. Equ. Control Theory 6, 381–407 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mercan, M.: Optimal control for distributed linear systems subjected to null-controllability. Appl. Anal. 92, 1928–1943 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nakoulima, O.: Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels, ESAIM - Control Optim. Calc. Var., 13, 623-638 (2007)

  31. Phung, K.D.: Carleman commutator approach in logarithmic convexity for parabolic equations. Math. Control Rel. Fields 8, 899–933 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phung, K.D., Wang, G.S.: An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 8, 681–703 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Phung, K.D., Wang, G., Zhang, X.: On the existence of time optimal control for linear evolution equations. Discrete Contin. Dyn. Syst. 8, 925–941 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Qin, S., Wang, G.: Equivalence of minimal time and minimal norm control problems for semilinear heat equations. Syst. Control Lett 73, 17–24 (2018)

    MathSciNet  Google Scholar 

  35. Qin, S., Wang, G.: Equivalence between minimal time and minimal norm control problems for heat equation. SIAM J. Control Optim 56, 981–1010 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sauer, N.: Dynamic boundary conditions and the Carslaw–Jaeger constitutive relation in heat transfer. SN Differ. Equ. Appl. 1, 1–20 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Schmidt, E.G.: The bang-bang principle for time-optimal problem in boundary control of the heat equation. SIAM J. Control Optim. 18, 101–107 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vazquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive-diffusive type. J. Differ. Equ. 250, 2143–2161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, G.: \(L^{\infty }\)-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control Optim 47, 1701–1720 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, G., Wang, L.: The Bang–Bang principle of time optimal controls for the heat equation with internal controls. Syst. Control Lett. 56, 709–713 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, L., Zuazua, E.: On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50, 2938–2958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time optimal control of evolution equations. Birkhäuser, Cham (2018)

    Book  MATH  Google Scholar 

  43. Yu, X., Zhang, L.: The bang-bang property of time and norm optimal control problems for parabolic equations with time-varying fractional Laplacian. ESAIM-Control Optim. Calc. Var. 25, 7 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y.: On a kind of time optimal control problem of the heat equation, Adv. Differ. Equ, 1-10 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Zouhair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 5.3

Assume that there are two positive constants \(D_1\) and \(D_2\), such that, for any \(\left( a_i\right) _{i \ge 1} \in l^2(\mathbb {R})\) and any \(r > 0\),

$$\begin{aligned} \sqrt{\sum _{\lambda _{k} \le r}\mid a_{k}\mid ^{2}} \le D_{1} e^{D_{2} \sqrt{r}} \left\| \sum _{\lambda _{k} \le r} a_{k} \psi _{k} \right\| _{L^{2}(\omega )}. \end{aligned}$$
(15)

Then, for any \(T>0\), there exist \(\beta \in (0,1)\) such that

$$\begin{aligned} \Vert \Psi (\cdot , T)\Vert \le \left( \mu \text {e}^{\frac{K}{T}}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}\right) ^{\beta }\Vert \Psi (\cdot , 0)\Vert ^{1-\beta }, \end{aligned}$$

Proof

Let \(\displaystyle \Psi _{0}=\sum _{k \ge 1} a_{k} \Phi _{k} \in \mathbb {L}^2.\) First, we have

$$\begin{aligned} \left\| \Psi (\cdot , T)\right\| ^{2} = \left\| \sum _{k \ge 1}a_{k} e^{-\lambda _{k} T} \Psi _{k}\right\| ^{2} = \sum _{\lambda _{k} \le r}\mid a_{k} e^{-\lambda _{k} T} \mid ^{2}+\sum _{\lambda _{k} > r}\mid a_{k} e^{-\lambda _{k} T} \mid ^{2}. \end{aligned}$$

By the inequality (15), we obtain

$$\begin{aligned} \sqrt{\sum _{\lambda _{k} \le r}\mid a_{k}e^{- \lambda _{k} T} \mid ^{2}} \le D_{1} e^{D_{2} \sqrt{r}} \left\| \sum _{\lambda _{k} \le r} a_{k}e^{-\lambda _{k} T}\psi _k \right\| _{L^{2}(\omega )}. \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \Vert \Psi (\cdot , T)\Vert&\le \sqrt{\sum _{\lambda _{k} \le r}\mid a_{k} e^{-\lambda _{k} T} \mid ^{2}}+\sqrt{\sum _{\lambda _{k}> r}\mid a_{k} e^{-\lambda _{k} T} \mid ^{2}}\\&\le D_{1} e^{D_{2} \sqrt{r}}\left\| \sum _{\lambda _{k} \le r} a_{k} e^{-\lambda _{k} T} \psi _{k}\right\| _{L^{2}(\omega )}+\sqrt{\sum _{\lambda _{k}>r}\mid a_{k} e^{-\lambda _{k} T}\mid ^{2}} \\&\le D_{1} e^{D_{2} \sqrt{r}}\left\| \sum _{\lambda _{k} \le r} a_{k} e^{-\lambda _{k} T} \psi _{k}+\sum _{\lambda _{k}>r} a_{k} e^{-\lambda _{k} T}\psi _{k}\right\| _{L^{2}(\omega )} \\&\quad +D_{1} e^{D_{2} \sqrt{r}}\left\| \sum _{\lambda _{k}>r} a_{k} e^{-\lambda _{k} T} \psi _{k}\right\| _{L^{2}(\omega )}+\sqrt{\sum _{\lambda _{k}>r}\mid a_{k} e^{-\lambda _{k} T}\mid ^{2}} \\&\le D_{1} e^{D_{2} \sqrt{r}}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}+\left( 1+ D_{1}\right) e^{D_{2} \sqrt{r}} e^{-r T} \sqrt{\sum _{\lambda _{k}>r}\mid a_{k}\mid ^{2}}\\&\le D_{1} e^{D_{2} \sqrt{r}}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}+\left( 1+ D_{1}\right) e^{D_{2} \sqrt{r}} e^{-r T} \left\| \Psi \left( \cdot ,0 \right) \right\| .\\ \end{aligned} \end{aligned}$$

Using Young inequality, for any \(\varepsilon >0\), we obtain

$$\begin{aligned} D_{2} \sqrt{r}=\frac{D_{2}}{\sqrt{\varepsilon T}} \sqrt{\varepsilon r T} \le \varepsilon r T+\left( \frac{D_{2}}{\sqrt{\varepsilon T}}\right) ^{2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \Vert \Psi (\cdot , T)\Vert&\le D_{1} e^{D_{2} \sqrt{r}}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}+\left( 1+ D_{1}\right) e^{D_{2} \sqrt{r}} e^{-r T} \left\| \Psi \left( \cdot ,0 \right) \right\| \\&\le D_{1} e^{\frac{D_{2}^2}{\varepsilon T}} e^{\varepsilon r T}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}+\left( 1+ D_{1}\right) e^{\frac{D_{2}^2}{\varepsilon T}} e^{(\varepsilon -1)r T} \left\| \Psi \left( \cdot ,0 \right) \right\| \\&\le (1+ D_{1}) e^{\frac{D_{2}^2}{\varepsilon T}} \left( e^{\varepsilon r T}\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}+ e^{(\varepsilon -1)r T} \left\| \Psi \left( \cdot ,0 \right) \right\| \right) . \end{aligned} \end{aligned}$$

By taking

$$\begin{aligned} rT=\ln \left( \frac{\left\| \Psi (\cdot , 0)\right\| }{\left\| \psi (\cdot , T)\right\| _{L^{2}(\omega )}}\right) , \end{aligned}$$

we deduce

$$\begin{aligned} \begin{aligned} \Vert \Psi (\cdot , T)\Vert&\le (1+ D_{1}) e^{\frac{D_{2}^2}{\varepsilon T}} \left[ \left( \frac{\Vert \Psi (\cdot , 0)\Vert }{\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}} \right) ^{\varepsilon } \Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}\right. \\&\quad \left. + \left( \frac{\Vert \Psi (\cdot , 0)\Vert }{\Vert \psi (\cdot , T)\Vert _{L^{2}(\omega )}} \right) ^{\varepsilon -1} \left\| \Psi \left( \cdot ,0 \right) \right\| \right] . \end{aligned} \end{aligned}$$

Setting \(\beta = 1-\varepsilon\), yields to the desired formula

$$\begin{aligned} \begin{aligned} \quad \Vert \Psi (\cdot , T)\Vert&\le 2 (1+ D_{1}) e^{\frac{D_{2}^2}{\varepsilon T}} \left\| \Psi (\cdot , 0)\right\| ^{1-\beta } \left\| \psi (\cdot , T)\right\| _{L^{2}(\omega )}^{\beta }. \end{aligned} \end{aligned}$$

\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniar, L., Oukdach, O. & Zouhair, W. Lebeau–Robbiano Inequality for Heat Equation with Dynamic Boundary Conditions and Optimal Null Controllability. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00633-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00633-2

Keywords

Mathematics Subject Classification

Navigation