Skip to main content
Log in

The Monotonicity of the Ratio of Two Line Integrals in Piecewise Smooth Differential Systems

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work, we study the monotonicity of the ratio of two line integrals

$$\begin{aligned} I_{i}(h)=\int _{\Gamma _{h}^{+}}f_{i}(x)ydx+\int _{\Gamma _{h}^{-}}f_{i}(x)ydx, i=0,1, \end{aligned}$$

with \(\Gamma ^{+}_{h}=\lbrace (x,y)\in {\mathbb {R}}^{2}~\vert ~ H^{+}(x,y)=h,~x> 0\rbrace\) and \(\Gamma _{h}^{-}=\lbrace (x,y)\in {\mathbb {R}}^{2}~\vert ~ H^{-}(x,y)={\tilde{h}},~x\le 0\rbrace\), where \(H^{+}(x,y)\) and \(H^{-}(x,y)\) have the form \(\frac{1}{2}y^{2}+\Psi _{1}(x)\) and \(\frac{1}{2}y^{2}+\Psi _{2}(x)\), respectively. We first present a criterion function defined directly by the functions which appear in the above integrals and prove the monotonicity of this criterion function implying the monotonicity of the ratio of these line integrals which is very important to find the number of limit cycles. Then we give several examples to illustrate the application of this criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asheghi, R., Zangeneh, H.: Bifurcation of limit cycles for a quintic Hamiltonian system with a double cuspidal loop. Comput. Math. Appl. 59, 1409–1418 (2010)

    Article  MathSciNet  Google Scholar 

  2. Asheghi, R., Bakhshalizadeh, A.: On the distribution of limit cycles in a Liénard system with a nilpotent center and a nilpotent saddle. Internat. J. Bifur. Chaos 26, 1650025 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bakhshalizadeh, A., Asheghi, R., Kazemi, R.: On the monotonicity of the ratio of some hyperelliptic integrals of order 7. Bull. Sci. Math. 158, 102810 (2020)

    Article  MathSciNet  Google Scholar 

  4. Barbashin, E.: Introduction to the Theory of Stability. Noordhoff, Groningen (1970)

    MATH  Google Scholar 

  5. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory, and Applications. Springer, London (2008)

    MATH  Google Scholar 

  6. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Amsterdam (1988)

    Book  Google Scholar 

  7. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc. 363, 109–129 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hilbert, D.: Mathematical problems. M Newton Transl. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MathSciNet  Google Scholar 

  9. Ito, T.: A Filippov solution of a system of differential equations with discontinuous right-hand sides. Econom. Lett. 4, 349–354 (1979)

    Article  MathSciNet  Google Scholar 

  10. Kunze, M.: Non-smooth Dynamical Systems. Springer, Berlin (2000)

    Book  Google Scholar 

  11. Li, C., Zhang, Z.: A criterion for determining the monotonicity of the ratio of two Abelian integrals. J. Differ. Eqns. 124, 407–424 (1996)

    Article  MathSciNet  Google Scholar 

  12. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems,. Int. J. Bifur Chaos 20, 1379–1390 (2010)

    Article  MathSciNet  Google Scholar 

  13. Liu, C., Xiao, D.: The monotonicity of the ratio of two Abelian integrals. Trans. Am. Math. Soc. 365, 5525–5544 (2013)

    Article  MathSciNet  Google Scholar 

  14. Liu, C., Xiao, D.: The smallest upper bound on the number of zeros of Abelian integrals. J. Diff. Eqns. 269, 3816–3852 (2020)

    Article  MathSciNet  Google Scholar 

  15. Liu, C., Chen, G., Sun, Z.: New criteria for the monotonicity of the ratio of two Abelian integrals. J. Math. Anal. Appl. 465, 220–234 (2018)

    Article  MathSciNet  Google Scholar 

  16. Liang, F., Han, M.: Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fract. 45, 454–464 (2012)

    Article  MathSciNet  Google Scholar 

  17. Liang, F., Han, M., Romanovski, V.: Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop. Nonlinear Anal. 75, 4355–4374 (2012)

    Article  MathSciNet  Google Scholar 

  18. Wang, N., Xiao, D., Yu, J.: The monotonicity of the ratio of hyperelliptic integrals. Bull. Sci. Math. 138, 805–845 (2014)

    Article  MathSciNet  Google Scholar 

  19. Wei, L., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete Contin. Dyn. Syst. 36, 2803–2825 (2016)

    Article  MathSciNet  Google Scholar 

  20. Yang, J., Zhao, L.: Bounding the number of limit cycles of discontinuous differential systems by using Picard–Fuchs equations. J. Diff. Eqns. 264, 5734–5757 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their comments and suggestions that helped us to improve the presentation of this paper. This work is supported by Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bakhshalizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshalizadeh, A., Asheghi, R. The Monotonicity of the Ratio of Two Line Integrals in Piecewise Smooth Differential Systems. Differ Equ Dyn Syst (2022). https://doi.org/10.1007/s12591-022-00599-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00599-7

Keywords

Mathematics Subject Classification

Navigation