Skip to main content

Advertisement

Log in

A Study on the Application of Optimal Control in a Bioeconomic System

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Sustainable forest management is one of the warming issues in the present century. In this manuscript, we have employed the model of control theory to control the consequence of toxicity and illegal logging of mature trees in the ecosystem of Sundarbans, the largest mangrove forest in the world. In this investigation, we have momentarily mentioned some of the fields in which these challenges are present. These fields especially consist of sustainable forestry management of ecosystem. We have reflected on the modified Leslie-Gower response function to set up as the alternative resource for industries when forestry resources are divested. The boundedness, persistence, equilibria and stability are examined.Our main aim is to investigate the spans and applications of control theory to control the effect of toxicity and illegal logging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are not real, they are simulated using MaTLAB software.

Notes

  1. In normal case \(\lambda =1\), then the values of \(\lambda\) are strictly positive, and in abnormal case, \(\lambda =0\).

References

  1. Alongi, D.M.: Present state and future of the world’s mangrove forests. Environment Conservation 29(3), 331–349 (2002)

    Article  Google Scholar 

  2. Arrow, k, Kuez, M.: Optimal Growth with Irreversible Investment in a Ramsey Model. Ecnometrica 38(2), 331–344 (1970)

    Article  MATH  Google Scholar 

  3. Berryman, Alan A.: The origins and evolution of predator-prey theory. Ecology 73(5), 1530–1535 (1992)

    Article  Google Scholar 

  4. Biswas, M.H.A.: Necessary conditions for optimal control problems with state constraints: Theory and applications, PhD Thesis, Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Portugal (2013)

  5. Biswas, M.H.A., de Pinho, M.R.: A maximum principle for optimal control problems with state and mixed constraints. ESAIM: Control, Optimization and Calculus of Variations 21(4), 939–957 (2015)

    MATH  Google Scholar 

  6. Biswas, M.H.A.: A Necessary conditions for optimal control problems with and without state constraints: a comparative study. WSEAS Transactions on Systems and Control 6(6), 217–228 (2011)

    Google Scholar 

  7. Biswas, M.H.A., Haque, M.M.: Nonlinear Dynamical systems in Modeling and Control of Infectious Disease. Book chapter of differential and difference equations with applications 164, 149–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston, USA (1982)

    MATH  Google Scholar 

  9. Chaudhary, M., Dhar, J., Sahu, G.P.V.: Mathematical model of depletion of forestry resource: effect of synthetic based industries. Int. J Biol. Vet. Agric Food Eng. 7(4), 130–134 (2013)

    Google Scholar 

  10. Chaudhuri, K.: Dynamic optimization of combined harvesting of a two species fishery. Ecol. Model 41(1), 17–25 (1988)

    Article  Google Scholar 

  11. Chen, L.J., Chen, F.: Global stability of a Leslie-Gower Predator-prey model with feedback controls. Appl. Math. Lett. 29(9), 1330–1334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, G.: Elements of ecology. Wiley and Sons, New York, USA (1954)

    Book  Google Scholar 

  13. Crawford, J.D.: Introduction to bifurcation theory. Rev. Mod. Phys. 63(4), 991–1037 (1991)

    Article  MathSciNet  Google Scholar 

  14. Dhar, J., Singh, H.: Modeling the depletion of forestry resource by wholly dependent industrialization in two adjoining habitat, Kobe. J. Math. 21, 1–13 (2004)

    MATH  Google Scholar 

  15. Dubey, B., Sharma, S., Sinha, P., Shukla, J.: Modeling the depletion of forestry resources by population and population pressure augmented industrialization. Appl. Math. Model 33(7), 3002–3014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control. Springer-Verlag, New York, USA (2005)

    MATH  Google Scholar 

  17. Freedman, H.I.: Deterministic mathematical method in population ecology. Marcel Debber, New York, USA (1980)

    MATH  Google Scholar 

  18. Garecia, O.: Forest stands as dynamical systems: an introduction. Modern Appl. Sci. 7(5), 21–32 (2013)

    Google Scholar 

  19. Ghosh, B., Kar, T.: Sustainable use of prey species in prey-predator system: jointly determined ecological thresholds and economics trade offs. Ecol. Model 272, 49–58 (2014)

    Article  Google Scholar 

  20. Giri, C.: Status and distribution of mangrove forests of the world using earth. Global Ecology and Biogeography 27(3), 33–49 (2011)

    Google Scholar 

  21. Gupta, R., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator-prey model with michaelis-menten type prey harvesting. J. Math. Anal. Appl. 398(1), 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hale, J.: Ordinary differential Equation. Klieger Publishing Company, Malabar (1989)

    Google Scholar 

  23. Hurwitz, A.: Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math. Ann. 46(2), 273–284 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jordan, D.W., Smith, P.: Nonlinear Differential Equation, 4th edn. Oxford Univesity Press, New York (2007)

    Google Scholar 

  25. Joshi, P.C., Swami: Air pollution induced changes in the photosynthetic pigments of selected plant species. J. Environ. Biol. 30, 295–614 (2009)

    Google Scholar 

  26. Kamke, E.: DIFFERENTIALGLEICHUNGEN, SPRINGER FACHMEDIEN WIESBADEN GMBH (1983)

  27. Kar, T.K.: Modeling and analysis of a harvested prey-predator system incorporating a prey refuge. J. Comput. Appl. Math. 185, 19–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kar, T.K., Chaudhuri, K.S.J.: On non-selective harvesting of two competing fish species in the presence of toxicity. Ecol. Model. 161, 125–137 (2003)

    Article  Google Scholar 

  29. Katsukawa, T.: A numerical investigation of the optimal control rule for decision-making in fisheries management. Fish Sci. 70, 123–131 (2004)

    Article  Google Scholar 

  30. Khatun, M.S., Biswas, M.H.A.: Optimal control strategies for preventing hepatitis B infection and reducing chronic liver cirrhosis incidence. Infect. Dis. Model. 5, 91–110 (2019)

    Google Scholar 

  31. Khatun, M.S., Biswas, M.H.A.: Modeling the effect of adoptive T cell therapy for the treatment of leukemia. Comp. Math. Methods 2(2), e1069 (2020)

    Article  MathSciNet  Google Scholar 

  32. Khatun, M.S., Biswas, M.H.A.: Mathematical modeling applied to renewable fishery management. Math. Model. Eng. Prob. 6(1), 121–128 (2019)

    Google Scholar 

  33. Kirk, D.E.: Optimal Control Theory: an Introduction. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1998)

    Google Scholar 

  34. Kot, M.: Elements of Mathematical Ecology, 1st edn. Cambridge University Press, UK (2003)

    MATH  Google Scholar 

  35. Kuang, Y.: Basic properties of mathematical population models. J. Biomath. 17, 129–142 (2002)

    MathSciNet  Google Scholar 

  36. Leslie, P.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lancia, R.A., Braun, C.E., Collopy, M.W., Dueser, R.D., Kie, J.G., Martinka, C.J., Nichols, J.D., Nudds, T.D., Porath, W.R., Tilghman, N.G.: ARM for the future: adaptive resource management in the wildlife profession. Wildl. Soc. Bull. 24, 436–442 (1996)

    Google Scholar 

  38. Leigh, J.R.: Optimal Control Theory: an Introduction. Dover Publications, Mineola (2004)

    Google Scholar 

  39. Lenhart, S., Workman, J.: Optimal Control Applied to Biological Models. Chapman Hall, CRC, Boca Raton (2007)

    Book  MATH  Google Scholar 

  40. Lotka, A.J.: Elements of Physical Biology. William and Wilkins, Philadelphia (1925)

    MATH  Google Scholar 

  41. Lukes, D.L.: Differential Equations: Classical to Controlled. Academic Press, New York (1982)

    MATH  Google Scholar 

  42. Lynch, S.: Dynamical Systems with Applications sing Mathematica. Birkhauser, Boston (2007)

    Google Scholar 

  43. Misra, A., Lata, K., Shukla, J.: A mathematical model for the depletion of forestry resources due to population pressure augmented industrialization. Int. J. Model Simul. Sci. Comput. 5(1), 1300–1322 (2014)

    Article  Google Scholar 

  44. Misra, A., Lata, K.: A depletion and conservation of forestry resources: a mathematical model. Differt. Equ. Dyn. Syst. 23(1), 25–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Murray, J.D.: Mathematical Biology I: an Introduction. Springer, New York, USA (2002)

    Book  MATH  Google Scholar 

  46. Perko, L.: Differential Equations and Dynamical System, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  47. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1967)

    Google Scholar 

  48. Routh, E.J.: A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Macmillan, Basingstoke (1877)

    Google Scholar 

  49. Samad, S.A., Biswas, M.H.A.: Mathematical Understanding of Dynamical Model for the Transmission of Endemic Tuberculosis in Bangladesh. Adv. Model. Optim. 20(2), 329–344 (2018)

    MATH  Google Scholar 

  50. Sarwardi, S., Mandal, P.K., Ray, S.: Analysis of a competitive prey-predator system with a prey refuge. Biosystems 110, 133–148 (2012)

    Article  Google Scholar 

  51. UFAO: Global Forest Resources Assessment. UN Food and Agriculture Organization, Rome (2010)

    Google Scholar 

  52. Vinter, R.B.: Optimal Control. Birkhauser, Boston (2000)

    MATH  Google Scholar 

  53. Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad. Lincei. Roma. 2, 31–113 (1926)

    MATH  Google Scholar 

  54. Walton, M.E.M.: Are mangroves worth replanting? The direct economic benefits of a community-based reforestation project. Environ. Conserv. 4(2), 59–68 (2006)

    Google Scholar 

  55. Walters, C.: Adaptive Management of Renewable Resources. Macmillan Publishing Company, New York (1986)

    Google Scholar 

  56. Wang, Y., Wang, J.: Influence of prey refuge on predator-prey dynamics. Nonlinear Dyn. 67(1), 191–201 (2012)

    Article  MathSciNet  Google Scholar 

  57. William, E., Boyce, Richardb C., DiPrima, Donglas B., Meade: Elementary Differential Equation, 11th edn. John Wiley, New York (2017)

    Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial support provided by the University Grant Commission, Bangladesh (UGC/1,157/ M.Phil and PhD/2016/5343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nazmul Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.N., Uddin, M.S. & Biswas, M.H.A. A Study on the Application of Optimal Control in a Bioeconomic System. Differ Equ Dyn Syst (2022). https://doi.org/10.1007/s12591-022-00589-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00589-9

Keywords

Mathematics Subject Classification

Navigation