Abstract
We study a class of models in which generalist predator utilizes two distinct prey species as their food sources. Several field data and experiments exhibit that predator may switch it’s predation behaviour depending upon the abundance of each prey population and also it is observed that fear for predator reduces the reproduction of prey populations. Based on these experimental evidences, we improve our two prey-one predator model by including the cost of fear into prey reproduction and switching mechanism in predation. Well-posedness of our model is verified by exploring the basic dynamical properties of the system. All the biologically feasible steady states and their stability conditions are derived in terms of model parameters. Our model system experiences transcritical bifurcation for fear parameters as bifurcation parameters. We identify the parameter regions associated with prey-1 free, prey-2 free, predator free and coexisting equilibria in various parametric planes. We further notice that high level of perceived fear of a prey species and the superior quality of that prey (as food source of predator) may increase the possibility of survival of that species and stability of coexistence of the system tended to be promoted. Switching behaviour suppresses the non-equilibrium dynamics and increases the chance of stabilization at coexistence steady state. We perform numerical simulations to verify our analytical findings and analyze the biological relevancy in nature.
Similar content being viewed by others
References
Abrams, P., Matsuda, H.: Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system. Evol. Ecol. 7, 312–326 (1993). https://doi.org/10.1007/BF01237749
Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol. 15(8), 337–341 (2000). https://doi.org/10.1016/s0169-5347(00)01908-x
Barman, D., Roy, J., Alam, S.: Dynamical behaviour of an infected predator-prey model with fear effect. Iran. J. Sci. Technol. Trans. A Sci. 45, 11 (2020). https://doi.org/10.1007/s40995-020-01014-y
Barman, D., Roy, J., Alam, S.: Trade-off between fear level induced by predator and infection rate among prey species. J. Appl. Math. Comput. 64, 635–663 (2020). https://doi.org/10.1007/s12190-020-01372-1
Barman, D., Roy, J., Alrabaiah, H., Panja, P., Mondal, S.P., Alam, S.: Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos Solitons Fractals 142, 110420 (2021). https://doi.org/10.1016/j.chaos.2020.110420
Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York (2012)
Das, A., Samanta, G.P.: Modeling the fear effect on a stochastic prey-predator system with additional food for the predator. J. Phys. A Math. Theor. 51, 465601 (2018). https://doi.org/10.1088/1751-8121/aae4c6
Das, A., Samanta, G.P.: Modelling the fear effect in a two-species predator-prey system under the influence of toxic substances. Rendiconti del Circolo Matematico di Palermo Series (2020). https://doi.org/10.1007/s12215-020-00570-x
Das, M., Samanta, G.P.: A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control 9, 334–349 (2021). https://doi.org/10.1007/s40435-020-00626-x
Das, M., Samanta, G.P.: A delayed fractional order food chain model with fear effect and prey refuge. Math. Comput. Simul. 178, 218–245 (2020). https://doi.org/10.1016/j.matcom.2020.06.015
Díaz-Ruiz, F., Delibes-Mateos, M., García-Moreno, J.. L., María López-Martín, J., Ferreira, C., Ferreras, P.: Biogeographical patterns in the diet of an opportunistic predator: the red fox vulpes vulpes in the iberian peninsula. Mamm. Rev. 43(1), 59–70 (2013). https://doi.org/10.1111/j.1365-2907.2011.00206.x2907.2011.00206.x
Elliott, K.H., Betini, G.S., Norris, D.R.: Fear creates an allee effect: experimental evidence from seasonal populations. Proc. Royal Soc. B Biol. Sci. 284(1857), 20170878 (2017). https://doi.org/10.1098/rspb.2017.0878
Evans, C., Findley, G.: A new transformation for the lotka-volterra problem. J. Math. Chem. 25, 105–110 (1999). https://doi.org/10.1023/A:1019172114300
Fussell, E.F., Krause, A.L., Van Gorder, R.A.: Hybrid approach to modeling spatial dynamics of systems with generalist predators. J. Theor. Biol. 462, 26–47 (2019). https://doi.org/10.1016/j.jtbi.2018.10.054
Gakkhar, S., Naji, R.K.: Existence of chaos in two-prey, one-predator system. Chaos Solitons Fractals 17(4), 639–649 (2003). https://doi.org/10.1016/S0960-0779(02)00473-3
Gilpin, M.E.: Spiral chaos in a predator-prey model. Am. Nat. 113(2), 306–308 (1979). https://doi.org/10.1086/283389
Hale, J.K.: Theory of functional differential equations. Springer-Verlag, New York (1977)
Llibre, J., Valls, C.: Global analytic first integrals for the real planar lotka-volterra system. J. Math. Phys. 48(3), 033507 (2007). https://doi.org/10.1063/1.2713076
Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43, 247–67 (2001). https://doi.org/10.1007/s002850100095
Matsuda, H.: Evolutionarily stable strategies for predator switching. J. Theor. Biol. 115(3), 351–366 (1985). https://doi.org/10.1016/S0022-5193(85)80197-1
Mondal, N., Barman, D., Alam, S.: Impact of adult predator incited fear in a stage-structured prey-predator model. Environ. Dev. Sustain. (2020). https://doi.org/10.1007/s10668-020-01024-1
Mondal, S., Maiti, A., Samanta, G.P.: Effects of fear and additional food in a delayed predator-prey model. Biophys. Rev. Lett. 13(4), 157–177 (2018)
Mondal, S., Samanta, G.P.: Dynamics of a delayed predator-prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food. J. Phys. A Math. Theor. 53, 295601 (2020). https://doi.org/10.1088/1751-8121/ab81d8
Mondal, S., Samanta, G.P.: Time-delayed predator-prey interaction with the benefit of antipredation response in presence of refuge. Z. Naturforsch. 76(1), 23–42 (2021). https://doi.org/10.1515/zna-2020-0195
Murdoch, W.W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39(4), 335–354 (1969). https://doi.org/10.2307/1942352
Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–131 (1975). https://doi.org/10.1016/S0065-2504(08)60288-3
Perko, L.: Differential equations and dynamical systems. Springer-Verlag, New York (2001)
Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. The American Naturalist 97(895), 209–223 (1963). https://doi.org/10.1086/282272
Roy, J., Barman, D., Alam, S.: Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 197, 104176 (2020). https://doi.org/10.1016/j.biosystems.2020.104176
Sahoo, D., Samanta, G.P.: Comparison between two tritrophic food chain models with multiple delays and anti-predation effect. Int. J. Biomath. 2150010, 2150010 (2021). https://doi.org/10.1142/S1793524521500108
Schaffer, W.M., Kot, M.: Chaos in ecological systems: the coals that newcastle forgot. Trends Ecol. Evol. 1(3), 58–63 (1986). https://doi.org/10.1016/0169-5347(86)90018-2
Tansky, M.: Switching effect in prey-predator system. J. Theor. Biol. 70(3), 263–271 (1978). https://doi.org/10.1016/0022-5193(78)90376-4
Tripathi, J., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with crowley-martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 45–69 (2016). https://doi.org/10.1016/j.cnsns.2015.06.008
van Baalen, M., Krivan, V., Van Rijn, P., Sabelis, M.W.: Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001). https://doi.org/10.1086/319933
Vance, R.R.: Predation and resource partitioning in one predator—two prey model communities. Am. Nat. 112(987), 797–813 (1978). https://doi.org/10.1086/283324
Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69(4), 1541–1558 (2012). https://doi.org/10.1007/s11071-012-0368-4
Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73, 1179–1204 (2016). https://doi.org/10.1007/s00285-016-0989-1
Willson, J., Hopkins, W.: Prey morphology constrains the feeding ecology of an aquatic generalist predator. Ecology 92(3), 744–54 (2011). https://doi.org/10.1890/10-0781.1
Xu, Y., Krause, A.L., Van Gorder, R.A.: Generalist predator dynamics under kolmogorov versus non-kolmogorov models. J Theor. Biol. 486, 110060 (2020). https://doi.org/10.1016/j.jtbi.2019.110060
Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011). https://doi.org/10.1126/science.1210908
Acknowledgements
The authors are grateful to the anonymous referees and Prof. Gail S. K. Wolkowicz (Editor), for their careful reading, valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sahoo, D., Samanta, G.P. Impact of Fear Effect in a Two Prey-One Predator System with Switching Behaviour in Predation. Differ Equ Dyn Syst 32, 377–399 (2024). https://doi.org/10.1007/s12591-021-00575-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12591-021-00575-7