Skip to main content
Log in

Impact of Fear Effect in a Two Prey-One Predator System with Switching Behaviour in Predation

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We study a class of models in which generalist predator utilizes two distinct prey species as their food sources. Several field data and experiments exhibit that predator may switch it’s predation behaviour depending upon the abundance of each prey population and also it is observed that fear for predator reduces the reproduction of prey populations. Based on these experimental evidences, we improve our two prey-one predator model by including the cost of fear into prey reproduction and switching mechanism in predation. Well-posedness of our model is verified by exploring the basic dynamical properties of the system. All the biologically feasible steady states and their stability conditions are derived in terms of model parameters. Our model system experiences transcritical bifurcation for fear parameters as bifurcation parameters. We identify the parameter regions associated with prey-1 free, prey-2 free, predator free and coexisting equilibria in various parametric planes. We further notice that high level of perceived fear of a prey species and the superior quality of that prey (as food source of predator) may increase the possibility of survival of that species and stability of coexistence of the system tended to be promoted. Switching behaviour suppresses the non-equilibrium dynamics and increases the chance of stabilization at coexistence steady state. We perform numerical simulations to verify our analytical findings and analyze the biological relevancy in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abrams, P., Matsuda, H.: Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system. Evol. Ecol. 7, 312–326 (1993). https://doi.org/10.1007/BF01237749

    Article  Google Scholar 

  2. Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol. 15(8), 337–341 (2000). https://doi.org/10.1016/s0169-5347(00)01908-x

    Article  Google Scholar 

  3. Barman, D., Roy, J., Alam, S.: Dynamical behaviour of an infected predator-prey model with fear effect. Iran. J. Sci. Technol. Trans. A Sci. 45, 11 (2020). https://doi.org/10.1007/s40995-020-01014-y

    Article  MathSciNet  Google Scholar 

  4. Barman, D., Roy, J., Alam, S.: Trade-off between fear level induced by predator and infection rate among prey species. J. Appl. Math. Comput. 64, 635–663 (2020). https://doi.org/10.1007/s12190-020-01372-1

    Article  MathSciNet  Google Scholar 

  5. Barman, D., Roy, J., Alrabaiah, H., Panja, P., Mondal, S.P., Alam, S.: Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos Solitons Fractals 142, 110420 (2021). https://doi.org/10.1016/j.chaos.2020.110420

    Article  MathSciNet  Google Scholar 

  6. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York (2012)

    Book  Google Scholar 

  7. Das, A., Samanta, G.P.: Modeling the fear effect on a stochastic prey-predator system with additional food for the predator. J. Phys. A Math. Theor. 51, 465601 (2018). https://doi.org/10.1088/1751-8121/aae4c6

    Article  MathSciNet  Google Scholar 

  8. Das, A., Samanta, G.P.: Modelling the fear effect in a two-species predator-prey system under the influence of toxic substances. Rendiconti del Circolo Matematico di Palermo Series (2020). https://doi.org/10.1007/s12215-020-00570-x

    Article  Google Scholar 

  9. Das, M., Samanta, G.P.: A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control 9, 334–349 (2021). https://doi.org/10.1007/s40435-020-00626-x

    Article  MathSciNet  Google Scholar 

  10. Das, M., Samanta, G.P.: A delayed fractional order food chain model with fear effect and prey refuge. Math. Comput. Simul. 178, 218–245 (2020). https://doi.org/10.1016/j.matcom.2020.06.015

    Article  MathSciNet  Google Scholar 

  11. Díaz-Ruiz, F., Delibes-Mateos, M., García-Moreno, J.. L., María López-Martín, J., Ferreira, C., Ferreras, P.: Biogeographical patterns in the diet of an opportunistic predator: the red fox vulpes vulpes in the iberian peninsula. Mamm. Rev. 43(1), 59–70 (2013). https://doi.org/10.1111/j.1365-2907.2011.00206.x2907.2011.00206.x

    Article  Google Scholar 

  12. Elliott, K.H., Betini, G.S., Norris, D.R.: Fear creates an allee effect: experimental evidence from seasonal populations. Proc. Royal Soc. B Biol. Sci. 284(1857), 20170878 (2017). https://doi.org/10.1098/rspb.2017.0878

    Article  Google Scholar 

  13. Evans, C., Findley, G.: A new transformation for the lotka-volterra problem. J. Math. Chem. 25, 105–110 (1999). https://doi.org/10.1023/A:1019172114300

    Article  MathSciNet  Google Scholar 

  14. Fussell, E.F., Krause, A.L., Van Gorder, R.A.: Hybrid approach to modeling spatial dynamics of systems with generalist predators. J. Theor. Biol. 462, 26–47 (2019). https://doi.org/10.1016/j.jtbi.2018.10.054

    Article  MathSciNet  Google Scholar 

  15. Gakkhar, S., Naji, R.K.: Existence of chaos in two-prey, one-predator system. Chaos Solitons Fractals 17(4), 639–649 (2003). https://doi.org/10.1016/S0960-0779(02)00473-3

    Article  MathSciNet  Google Scholar 

  16. Gilpin, M.E.: Spiral chaos in a predator-prey model. Am. Nat. 113(2), 306–308 (1979). https://doi.org/10.1086/283389

    Article  MathSciNet  Google Scholar 

  17. Hale, J.K.: Theory of functional differential equations. Springer-Verlag, New York (1977)

    Book  Google Scholar 

  18. Llibre, J., Valls, C.: Global analytic first integrals for the real planar lotka-volterra system. J. Math. Phys. 48(3), 033507 (2007). https://doi.org/10.1063/1.2713076

    Article  MathSciNet  Google Scholar 

  19. Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43, 247–67 (2001). https://doi.org/10.1007/s002850100095

    Article  MathSciNet  Google Scholar 

  20. Matsuda, H.: Evolutionarily stable strategies for predator switching. J. Theor. Biol. 115(3), 351–366 (1985). https://doi.org/10.1016/S0022-5193(85)80197-1

    Article  MathSciNet  Google Scholar 

  21. Mondal, N., Barman, D., Alam, S.: Impact of adult predator incited fear in a stage-structured prey-predator model. Environ. Dev. Sustain. (2020). https://doi.org/10.1007/s10668-020-01024-1

    Article  Google Scholar 

  22. Mondal, S., Maiti, A., Samanta, G.P.: Effects of fear and additional food in a delayed predator-prey model. Biophys. Rev. Lett. 13(4), 157–177 (2018)

    Article  Google Scholar 

  23. Mondal, S., Samanta, G.P.: Dynamics of a delayed predator-prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food. J. Phys. A Math. Theor. 53, 295601 (2020). https://doi.org/10.1088/1751-8121/ab81d8

    Article  MathSciNet  Google Scholar 

  24. Mondal, S., Samanta, G.P.: Time-delayed predator-prey interaction with the benefit of antipredation response in presence of refuge. Z. Naturforsch. 76(1), 23–42 (2021). https://doi.org/10.1515/zna-2020-0195

    Article  Google Scholar 

  25. Murdoch, W.W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39(4), 335–354 (1969). https://doi.org/10.2307/1942352

    Article  Google Scholar 

  26. Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–131 (1975). https://doi.org/10.1016/S0065-2504(08)60288-3

    Article  Google Scholar 

  27. Perko, L.: Differential equations and dynamical systems. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  28. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. The American Naturalist 97(895), 209–223 (1963). https://doi.org/10.1086/282272

    Article  Google Scholar 

  29. Roy, J., Barman, D., Alam, S.: Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 197, 104176 (2020). https://doi.org/10.1016/j.biosystems.2020.104176

    Article  Google Scholar 

  30. Sahoo, D., Samanta, G.P.: Comparison between two tritrophic food chain models with multiple delays and anti-predation effect. Int. J. Biomath. 2150010, 2150010 (2021). https://doi.org/10.1142/S1793524521500108

    Article  MathSciNet  Google Scholar 

  31. Schaffer, W.M., Kot, M.: Chaos in ecological systems: the coals that newcastle forgot. Trends Ecol. Evol. 1(3), 58–63 (1986). https://doi.org/10.1016/0169-5347(86)90018-2

    Article  Google Scholar 

  32. Tansky, M.: Switching effect in prey-predator system. J. Theor. Biol. 70(3), 263–271 (1978). https://doi.org/10.1016/0022-5193(78)90376-4

    Article  MathSciNet  Google Scholar 

  33. Tripathi, J., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with crowley-martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 45–69 (2016). https://doi.org/10.1016/j.cnsns.2015.06.008

    Article  MathSciNet  Google Scholar 

  34. van Baalen, M., Krivan, V., Van Rijn, P., Sabelis, M.W.: Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001). https://doi.org/10.1086/319933

    Article  Google Scholar 

  35. Vance, R.R.: Predation and resource partitioning in one predator—two prey model communities. Am. Nat. 112(987), 797–813 (1978). https://doi.org/10.1086/283324

    Article  Google Scholar 

  36. Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69(4), 1541–1558 (2012). https://doi.org/10.1007/s11071-012-0368-4

    Article  MathSciNet  Google Scholar 

  37. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73, 1179–1204 (2016). https://doi.org/10.1007/s00285-016-0989-1

    Article  MathSciNet  Google Scholar 

  38. Willson, J., Hopkins, W.: Prey morphology constrains the feeding ecology of an aquatic generalist predator. Ecology 92(3), 744–54 (2011). https://doi.org/10.1890/10-0781.1

    Article  Google Scholar 

  39. Xu, Y., Krause, A.L., Van Gorder, R.A.: Generalist predator dynamics under kolmogorov versus non-kolmogorov models. J Theor. Biol. 486, 110060 (2020). https://doi.org/10.1016/j.jtbi.2019.110060

    Article  MathSciNet  Google Scholar 

  40. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011). https://doi.org/10.1126/science.1210908

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and Prof. Gail S. K. Wolkowicz (Editor), for their careful reading, valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Samanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, D., Samanta, G.P. Impact of Fear Effect in a Two Prey-One Predator System with Switching Behaviour in Predation. Differ Equ Dyn Syst 32, 377–399 (2024). https://doi.org/10.1007/s12591-021-00575-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-021-00575-7

Keywords

Navigation