Skip to main content
Log in

Comparative Study on Sixth Order Boundary Value Problems with Application to Linear Hydrodynamic Stability Problem and Benard Layer Eigenvalue Problem

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Numerical estimation for higher order eigenvalue problems are promising and has accomplished significant importance, mainly due to existence of higher order derivatives and boundary conditions relating to higher order derivatives of the unknown functions. In this article, we perform a numerical study of linear hydrodynamic stability of a fluid motion caused by an erratic gravity field. We employ two methods, collocation and spectral collocation based on Bernstein and Legendre polynomials to solve the linear hydrodynamic stability problems and Benard type convection problems. In order to handle boundary conditions, our techniques state all the unknown coefficients of boundary conditions derivatives in terms of known co-efficient. The schemes have been carried out to several test problems to establish the efficiency of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

v:

Velocity field

\( \nu \,\,\,\, \) :

Coefficient of kinematic viscosity

\( {\text{k}} \) :

Thermal diffusivity

\( {\text{U}} \) :

Amplitudes of vertical velocity

\( {{\sigma }} \) :

Constant

T :

Temperature

\( {{\varTheta }} \) :

Perturbation constant

\( {\text{h}} \) :

Depth of layer of fluid

\( \rho \,\, \) :

Density of fluid

\( {\text{p}} \) :

Pressure

\( {{\alpha }}\,\, \) :

Thermal expansion coefficient

\( \beta \,\,\, \) :

Pressure gradient

\( {\text{a}} \) :

Wave number

\( g\,\,\, \) :

Acceleration due to gravity

\( {\text{Ra}} \) :

Nondimensional quantity (\( \,{{{{\alpha }}\,{\text{g}}\,{{\beta }}\,\,{\text{h}}^{ 4} } \mathord{\left/ {\vphantom {{{{\alpha }}\,{\text{g}}\,{{\beta }}\,\,{\text{h}}^{ 4} } {{\text{k}}\,{{\nu }}}}} \right. \kern-0pt} {{\text{k}}\,{{\nu }}}} \))

\( \,\,\,{{\varepsilon }} \) :

Scale parameter

References

  1. Chandrasekhar, S.: Hydrodynamic and Hydro Magnetic Stability. Clarendon Press, Oxford (1981). 1961(Reprinted: Dover Books, New York)

    Google Scholar 

  2. Agarwal, R.P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986)

    Book  Google Scholar 

  3. Baldwin, P.: Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods. Philos. Trans. R. Soc. Lond. Ser. A 322(1566), 281–305 (1987)

    Article  MathSciNet  Google Scholar 

  4. Twizell, E.H., Boutayeb, B.: Numerical methods for the solution of special general sixth-order boundary-value problems, with applications to Benard–Layer eigenvalue problems. Proc. R. Soc. A 431, 433–450 (1990)

    MATH  Google Scholar 

  5. Lesnic, D., Attili, B.: An efficient method for sixth-order Sturm–Liouville problems. Int. J. Sci. Technol. 2, 109–114 (2007)

    Google Scholar 

  6. Siyyam, H.I., Syam, M.I.: An efficient technique for finding the eigenvalue of sixth order Sturm-Liouville problems. Appl. Math. Sci. 5, 2425–2436 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Allame, M., Ghasemi, H., Tavassoli Kajani, M.: An appropriate method for eigenvalues approximation of sixth-order Sturm-Liouville problems by using integral operation matrix over the Chebyshev polynomials. AIP Conf. Proc. 1684, 090001 (2015). https://doi.org/10.1063/1.4934326

    Article  Google Scholar 

  8. Greenberg, L., Marletta, M.: Oscillation theory and numerical solution of sixth order Sturm–Liouville problem. SIAM J. Numer. Anal. 35(5), 2070–2098 (1998)

    Article  MathSciNet  Google Scholar 

  9. Wang, Y., Zhao, Y.B., Wei, G.W.: A note on numerical solution of high order differential equations. J. Comput. Appl. Math. 159, 387–398 (2003)

    Article  MathSciNet  Google Scholar 

  10. Gheorghiu, C.I., Dragomirescu, F.I.: Spectral methods in linear stability. Application to thermal convection with variable gravity field. Appl. Numer. Math. 59, 1290–1302 (2009)

    Article  MathSciNet  Google Scholar 

  11. Mdalla, Q.M., Syam, M.I.: The Chebyshev collocation-path following method for solving sixth order Sturm–Liouville problems. Appl. Math. Comput. 232, 391–398 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Bhatti, M.I., Bracken, P.: Solutions of differential equations in a Bernstein polynomial basis. J Comput Appl Math 20, 272–280 (2007)

    Article  MathSciNet  Google Scholar 

  13. Doha, E.H., Bhrawy, A.H., Saker, M.A.: On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations, Boundary Value Problems, pp. 1–16. Hindawi Publishing Corporation, London (2011)

    MATH  Google Scholar 

  14. Fronberg, B.: A Practical Guide to Pseudo Spectral Methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge (1996)

    Book  Google Scholar 

  15. Lui, S.H.: Numerical Analysis of Partial Differential Equation. Wiley, Hoboken (2011)

    Book  Google Scholar 

  16. Shen, J., Tang, T.: Spectral and High Order Methods with Application, Mathematics Monograph Series 3. Science Press, Beijing, China, ISBN 7-03-017722-3/0.2553 (2006)

  17. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia, PA (2000)

    Book  Google Scholar 

  18. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465–511 (2000)

    Article  MathSciNet  Google Scholar 

  19. Samir Kumar, B.: Tchebychev Polynomial Approximations for mth Order Boundary Value Problems. Int. J. Pure Appl. Math. 98(1), 45–63 (2015). ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

  20. Aljouiee, A., Samir Kumar, B.: Windowed Fourier frames to approximate two-point boundary value problems. Abstract and Applied Analysis, Volume 2015, pp 1–7, Article ID 153010

  21. Islam, M.S., Farzana, H., Bhowmik, S.K.: Numerical solutions of sixth order eigenvalue problems using Galerkin weighted residual method. Differ. Equ. Dyn. Syst. Spring 25(2), 187–205 (2017)

    Article  MathSciNet  Google Scholar 

  22. Islam, M.S., Hossain, M.B.: Numerical solutions of eighth order BVP by the Galerkin residual technique with Bernstein and Legendre polynomials. Appl. Math. Comput. 261, 48–59 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Yousefi, S.A., Behroozifar, M., Dehghan, M.: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of mass. J. Comput. Appl. Math. 235, 5272–5283 (2011)

    Article  MathSciNet  Google Scholar 

  24. Akyuz, D.A., Isler, N.: Bernstein collocation method for solving nonlinear differential equations. Math. Comput. Appl. 18(3), 293–300 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Alshbool, M.H.T., Bataineh, A.S., Hashim, I., Isik, O.R.: Approximate solutions of singular differential equations with estimation error by using Bernstein polynomials. Int. J. Pure Appl. Math. 100(1), 109–125 (2015)

    Article  Google Scholar 

  26. Kreyszig, E.: Bernstein polynomials and numerical integration. Int. J. Numer. Methods Eng. 14, 292–295 (1979)

    Article  Google Scholar 

  27. Gautschi, W., Orthogonal Polynomials: Computation and Approximation. Oxford Science Publications, Oxford (2004)

    Google Scholar 

  28. Shohat, J.: On the convergence properties of Lagrange interpolation based on the zeros of orthogonal Tchebycheff polynomials. Ann. Math. 38(4), 758–769 (1937)

    Article  MathSciNet  Google Scholar 

  29. Taher, A.H.S., Malek, A., Masuleh, S.H.M.: Chebychev differentiation matrices for efficient Computation of the eigenvalues of fourth order Sturm-Liouville problems. Appl. Math. Model. 37, 4634–4642 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Bhowmik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma

Lemma [23] Suppose that the function\( u:[0,1] \to R \)is n + 1 times continuously differentiable i.e., \( u \in C^{n + 1} \left. {\left( {[0,1]} \right)} \right) \)and\( \,\,V_{n} = span\,\,\,\left\{ {B_{0,n} (x) \, B_{1,n} (x) B_{2,n} (x)\ldots \ldots B_{n,n} (x)} \right\} \). If\( C^{T} B \)be the best approximation\( u \)out of\( {\text{V}}_{\text{n}} \), then

$$ \left\| {u - C^{T} B} \right\|_{{L^{2} \left[ {0,1} \right]}} \le \frac{\gamma }{{\left( {n + 1} \right)!\,\sqrt {2n + 3} }}[25]; $$
(69)

where, \( \gamma = \mathop {\hbox{max} }\limits_{x \in [0,1]} \,\left| {u^{n + 1} (x)} \right|\, \), \( C = \left[ {c_{.0} ,c_{1.} ,c_{2.} , \ldots ,c_{n} } \right]^{T} \)

Proof

Since, the set \( p_{n} = \left\{ {x_{1} ,x_{2} ,x_{3} , \ldots ,x_{n} } \right\} \) is a basis polynomials space of degree n.

Therefore, we define the function

$$ {\text{u}}_{1} ({\text{x}}) = {\text{u}}\,(0) + {\text{x}}\,{{u^{\prime}}}\,(0) + \frac{{{\text{x}}^{ 2} }}{2\,!}{{u^{\prime\prime}}}\left( 0 \right) + \frac{\text{x}}{3\,!}^{ 3} {{u^{\prime\prime\prime}}}\left( 0 \right) + \cdots + \frac{{{\text{x}}^{\text{n}} }}{{{\text{n}}\,\,!}}{{u^{\prime\prime}}}\left( 0 \right) $$
(70)

From the Taylor expansion, we have

$$ \left| {u(x) - u_{1} (x)} \right| = \int\limits_{0}^{1} {\left| {u^{n + 1} \left( {\alpha_{x} } \right)\,\frac{{x^{n + 1} }}{(n + 1)\,\,!}} \right|} $$
(71)

where, \( {{\alpha }}_{\text{x}} \in \left( {0,\,\,1} \right) \). Since \( C^{T} B \) be the finest estimation of \( {\text{u}} \) out of \( {\text{V}}_{\text{n}} \), \( u_{1} \in V_{n} \).

$$ \begin{aligned} \left\| {\,u - C^{T} } \right\|_{{L^{2} (0,1)}}^{2} \le\, & \left\| {u - u_{1} } \right\|_{{L^{2} (0,1)}}^{2} = \int\limits_{0}^{1} {\left| {u(x) - u_{1} (x)} \right|^{2} } dx \\ = & \int\limits_{0}^{1} {\left| {u^{n + 1} \left( {\alpha_{x} } \right)} \right|^{2} } \left( {\frac{{x^{n + 1} }}{(n + 1)\,\,!}} \right)^{2} dx \\ \le & \frac{{x^{n + 1} }}{{(n + 1)\,\,!^{2} }}\int\limits_{0}^{1} {x^{2n + 2} } dx = \frac{\gamma }{{(n + 1)!^{2} (2n + 3)}} \\ \end{aligned} $$

Taking the square root on both sides,

$$ \left\| {\,u - C^{T} } \right\|_{{L^{2} (0,1)}}^{2} \le \frac{\gamma }{{(n + 1)!^{2} (2n + 3)}} $$
(72)

We thus proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzana, H., Bhowmik, S.K. Comparative Study on Sixth Order Boundary Value Problems with Application to Linear Hydrodynamic Stability Problem and Benard Layer Eigenvalue Problem. Differ Equ Dyn Syst 28, 559–585 (2020). https://doi.org/10.1007/s12591-019-00509-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00509-4

Keywords

Navigation