Skip to main content
Log in

Existence and Uniqueness of a Non-Negative Monotonic Solution of a Nonlinear Ordinary Differential Equation

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence and uniqueness of a non-negative monotonically increasing solution of the boundary value problem (BVP)

$$\begin{aligned}&H''(\eta )-H^p(\eta )H'(\eta )+\frac{\eta }{2}H'(\eta )+\frac{1}{2p}H(\eta )=0,\quad \eta >0,\\&H(0)=0,\quad \lim _{\eta \rightarrow +\infty }\eta ^{-\frac{1}{p}}H(\eta )=1, \end{aligned}$$

using a shooting argument for \(p>1\). This BVP arises when we construct the large time asymptotic solution of the modified Burgers equation, using the method of matched asymptotic expansions, on the quarter plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leach, J.A.: A quarter-plane problem for the modified Burgers’ equation. J. Math. Phys. 54, 091502 (2013)

    Article  MathSciNet  Google Scholar 

  2. Sachdev, P.L.: Nonlinear Ordinary Differential Equations and their Applications. Marcel Dekker Inc., New York (1991)

    MATH  Google Scholar 

  3. Rao, C.S., Satyanarayana, E.: A survey on shooting arguments for boundary value problems. Indian J. Pure Appl. Math. 38(6), 495–516 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Rao, C.S., Sachdev, P.L., Ramaswamy, M.: Analysis of the self- similar solutions of the non-planar Burgers equation. Nonlinear Anal. 51, 1447–1472 (2002)

    Article  MathSciNet  Google Scholar 

  5. Rao, C.S., Sachdev, P.L., Ramaswamy, M.: Self-similar solutions of a generalized Burgers equation with nonlinear damping. Nonlinear Anal. RWA 4, 723–741 (2003)

    Article  MathSciNet  Google Scholar 

  6. Peletier, L.A., Serafini, H.C.: A very singular solution and other self-similar solutions of the heat equation with convection. Nonlinear Anal. TMA 24, 29–49 (1995)

    Article  MathSciNet  Google Scholar 

  7. Soewono, E., Debnath, L.: Classification of self-similar solutions to a generalized Burgers equation. J. Math. Anal. Appl. 184, 389–398 (1994)

    Article  MathSciNet  Google Scholar 

  8. Cazenave, T., Escobedo, M.: A two-parameter shooting problem for a second-order differential equation. J. Differ. Equ. 113, 418–451 (1994)

    Article  MathSciNet  Google Scholar 

  9. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  10. Burgers, J.M.: Application of a model system to illustrate some points of the statistical theory of turbulence. Proc. R. Neth. Acad. Sci. Amst. 43, 2–12 (1940)

    MathSciNet  MATH  Google Scholar 

  11. Hopf, E.: The partial differential equation \(u_t + uu_x=\mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  12. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    Article  MathSciNet  Google Scholar 

  13. Sachdev, P.L.: Nonlinear Diffusive Waves. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  14. Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V., Aswin, V.S.: A systematic literature review of Burgers’ equation with recent advances. Pramana J. Phys. 90, 69 (2018)

    Article  Google Scholar 

  15. Sachdev, P.L.: A generalised Cole–Hopf transformation for nonlinear parabolic and hyperbolic equations. J. Appl. Math. Phys. (ZAMP) 29, 963–970 (1978)

    Article  MathSciNet  Google Scholar 

  16. Nimmo, J.J.C., Crighton, D.G.: Bäcklund transformations for nonlinear parabolic equations: the general results. Proc. R. Soc. Lond. A384, 381–401 (1982)

    MATH  Google Scholar 

  17. Nariboli, G.A., Lin, W.C.: A new type of Burgers’ equation. Z. Angew. Math. Mech. 53, 505–510 (1973)

    Article  Google Scholar 

  18. Harris, S.E.: Sonic shocks governed by the modified Burgers’ equation. Eur. J. Appl. Math. 7, 201–222 (1996)

    Article  MathSciNet  Google Scholar 

  19. Lee-Bapty, I.P., Crighton, D.G.: Nonlinear wave motion governed by the modified Burgers equation. Philos. Trans. R. Soc. Lond. Ser. A 323, 173–209 (1987)

    Article  MathSciNet  Google Scholar 

  20. Sugimoto, N., Yamane, Y., Kakutani, T.: Shock wave propagation in a viscoelastic rod. In: Nigul, U., Engelbrecht, J. (eds.) Proc. IUTAM Symp. Nonlinear Deformation Waves, Tallinn 1982, pp. 203–208. Springer, Berlin, Heidelberg (1983)

  21. Ghai, Y., Saini, N.S.: Shock waves in dusty plasma with two temperature superthermal ions. Astrophys. Space Sci. 362, 58 (2017)

    Article  Google Scholar 

  22. Mahmoud, A.A.: Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system. Astrophys. Space Sci. 363, 18 (2018)

    Article  MathSciNet  Google Scholar 

  23. Sachdev, P.L., Rao, C.S., Enflo, B.O.: Large-time asymptotics for periodic solutions of the modified Burgers equation. Stud. Appl. Math. 114, 307–323 (2005)

    Article  MathSciNet  Google Scholar 

  24. Zemlyanukhin, A.I., Bochkarev, A.V.: Nonlinear summation of power series and exact solutions of evolution equations. Russ. Math. 62, 29–35 (2018)

    Article  MathSciNet  Google Scholar 

  25. Bratsos, A.G.: A fourth-order numerical sheme for solving the modified Burgers equation. Comput. Math. Appl. 60, 1393–1400 (2010)

    Article  MathSciNet  Google Scholar 

  26. Oruç, Ö., Bulut, F., Esen, A.: A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation. J. Math. Chem. 53, 1592–1607 (2015)

    Article  MathSciNet  Google Scholar 

  27. Duan, Y., Liu, R., Jiang, Y.: Lattice Boltzmann model for the modified Burgers’ equation. Appl. Math. Comput. 202, 489–497 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Bernfeld, S.R., Lakshmikantham, V.: An Introduction to Nonlinear Boundary Value Problems. Academic Press Inc., New York (1974)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for their valuable comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Srinivasa Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, P., Rao, C.S. Existence and Uniqueness of a Non-Negative Monotonic Solution of a Nonlinear Ordinary Differential Equation. Differ Equ Dyn Syst 30, 957–968 (2022). https://doi.org/10.1007/s12591-019-00483-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00483-x

Keywords

Navigation