Skip to main content
Log in

Impact of Predator Signals on the Stability of a Predator–Prey System: A Z-Control Approach

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript


In contrast to long standing view on predator–prey interactions that predators have only direct effect on prey by killing, recent field experimentation on terrestrial vertebrates showed that indirect effect of predators’ fear may alter the behavioral changes on prey, including foraging and reproduction. Usually, prey perceive the signals from predators (chemical and/or vocal cues) and change their life-history and behavior to reduce the probability of being killed. Recently, Wang et al. (J Math Biol 73:1179–1204, 2016) proposed and analyzed a predator–prey model by considering the fear effect on prey population. They concluded that the model dynamics may exhibit both supercritical and subcritical Hopf bifurcation, while the classical predator–prey model exhibits only supercritical Hopf bifurcation. The cost of fear on prey may dramatically reduce foraging and reproduction, which may change the ecosystem stability. In the present investigation, we explore the possible applications of fear in prey due to predators’ signals and error based Z-control mechanism by manipulating the abundance of predator population. Our results suggest that by manipulating or controlling the abundance of predator one can achieve a desired prey population density. We also observe that Z-control mechanism has the property to produce a stable steady-state or a stable limit cycle by excluding the bi-stability situation as observed by Wang et al. We perform extensive numerical simulations to illustrate our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Taylor, R.J.: Predation. Chapman & Hall, New York (1984)

    Book  Google Scholar 

  2. Lima, S.L., Dill, L.M.: Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990)

    Article  Google Scholar 

  3. Simmers, J.: Neurobiology’s Solutions to the Predator-prey Conundrum (2016)

  4. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398–1401 (2011)

    Article  Google Scholar 

  5. Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, J., Berger, M., Elmhagen, M., Letnic, Bo, Nelson, M.P., et al.: Status and ecological effects of the worlds largest carnivores. Science 343, 1241484 (2014)

    Article  Google Scholar 

  6. Suraci, J.P., Clinchy, M., Dill, L.M., Roberts, D., Zanette, L.Y.: Fear of large carnivores causes a trophic cascade. Nat. Commun. (2016)

  7. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73, 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  8. Schmitz, O.J., Beckerman, A.P., Brien, K.M.: Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997)

    Article  Google Scholar 

  9. Preisser, E.L., Bolnick, D.I., Benard, M.F.: Scared to death? the effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005)

    Article  Google Scholar 

  10. Ripple, W.J., Beschta, R.L.: Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54, 755–766 (2004)

    Article  Google Scholar 

  11. Wirsing, A.J., Heithaus, M.R., Dill, L.M.: Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 74, 93–101 (2007)

    Article  Google Scholar 

  12. Hua, F., Sieving, K.E., Fletcher, R.J., Wright, C.A.: Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav. Ecol 25, 509–519 (2014)

    Article  Google Scholar 

  13. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three species food chain model with fear. Int. J. Bifur. Chaos 28, 1850009 (2018)

    Article  MathSciNet  Google Scholar 

  14. Rosenzweig, M.L.: Paradox of enrichment: Destabilization of exploitation ecosystem in ecological time. Science 171, 385387 (1971)

    Article  Google Scholar 

  15. Zhang, Y., Yan, X., Liao, B., Zhang, Y., Ding, Y.: Z-type control of populations for lotka-volterra model with exponential convergence. Math. Biosci. 272, 15–23 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liao, B., Zhang, Y.: Different complex zfs leading to different complex znn models for time-varying complex generalized inverse matrices. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1621–1631 (2014)

    Article  Google Scholar 

  17. Lu, J., Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos: an interdisciplinary. J. Nonlinear Sci. 15(4), 043901 (2005)

    MATH  Google Scholar 

  18. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 44(10), 976–988 (1997)

    Article  MathSciNet  Google Scholar 

  19. Psaltis, D., Sideris, A., Yamamura, A.: A multilayered neural network controller. IEEE Control Syst. Mag. 8(2), 17–21 (1988)

    Article  Google Scholar 

  20. Xiao-Qun, L.: W. and Jun-An. Parameter identification and backstepping control of uncertain L\(\ddot{u}\) system. Chaos Solit. Fract. 18(4), 721–729 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lacitignola, D., Diele, F., Marangi, C., Provenzale, A.: On the dynamics of a generalized predator-prey system with z-type control. Math. Biosci. 280, 10–23 (2016)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Z., Zhang, Y.: Design and experimentation of acceleration-level drift-free scheme aided by two recurrent neural networks. IET Control Theory Appl. 7(1), 25–42 (2013)

    Article  MathSciNet  Google Scholar 

  23. Apfelbach, R., Blanchard, C.D., Blanchard, R.J., Hayes, R.A., McGregor, I.S.: The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci. Biobehav. Rev. 29(8), 1123–1144 (2005)

    Article  Google Scholar 

  24. Banks, P.B., Daly, A., Bytheway, J.P.: Predator odours attract other predators, creating an olfactory web of information. Biol. Lett. 12(5), 20151053 (2016)

    Article  Google Scholar 

  25. Hettena, A.M., Munoz, N., Blumstein, D.T.: Prey responses to predator’s sounds: a review and empirical study. Ethology 120(5), 427–452 (2014)

    Article  Google Scholar 

  26. Garrettson, P.R., Rohwer, F.C.: Effects of mammalian predator removal on production of uplandnesting ducks in north dakota. J. Wildl. Manage. 398–405 (2001)

  27. Stoudt, J.H.: Habitat use and productivity of canvasbacks in southwestern Manitoba, 1961–72. Technical report, US Fish and Wildlife Service (1982)

  28. Sargeant, A.B., Greenwood, R.J., Sovada, M. A., Shaffer, T.L.: Distribution and abundance of predators that affect duck production-prairie pothole region. Technical report, Fish And Wildlife Service Jamestown Nd Northern Prairie Wildlife Research Center (1993)

  29. Riechert, S.E., Bishop, L.: Prey control by an assemblage of generalist predators: spiders in garden test systems. Ecology 71(4), 1441–1450 (1990)

    Article  Google Scholar 

  30. Hilker, F.M., Schmitz, K.: Disease-induced stabilization of predator-prey oscillations. J. Theoret. Biol. 255(3), 299–306 (2008)

    Article  MathSciNet  Google Scholar 

  31. Bairagi, N., Chaudhuri, S., Chattopadhyay, J.: Harvesting as a disease control measure in an ecoepidemiological system—a theoretical study. Math. Biosci. 217(2), 134–144 (2009)

    Article  MathSciNet  Google Scholar 

  32. Pal, N., Samanta, S., Chattopadhyay, J.: The impact of diffusive migration on ecosystem stability. Chaos, Solit. Fract. 78, 317–328 (2015)

    Article  MathSciNet  Google Scholar 

  33. Greenman, J.V., Hoyle, A.S.: Pathogen exclusion from eco-epidemiological systems. Am. Nat. 176(2), 149–158 (2010)

    Article  Google Scholar 

  34. Kooi, B.W., van Voorn, G.A.K., Das, K.P.: Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease. Ecol. Complex. 8(1), 113–122 (2011)

    Article  Google Scholar 

  35. Ghosh, K., Samanta, S., Biswas, S., Rana, S., ELmojtaba, I.M., Kesh, D.K., Chattopadhyay, J.: Stability and bifurcation analysis of an eco-epidemiological model with multiple delays. Nonlinear Stud. 23(2), 167–208 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Chattopadhyay, J., Ghosal, G., Chaudhuri, K.S.: Nonselective harvesting of a prey-predator community with infected prey. Korean J. Comput. Appl. Math. 6(3), 601–616 (1999)

    Article  MathSciNet  Google Scholar 

  37. Morozov, A.Y., Petrovskii, S.V., Nezlin, N.P.: Towards resolving the paradox of enrichment: the impact of zooplankton vertical migrations on plankton systems stability. J. Theoret. Biol. 248(3), 501–511 (2007)

    Article  MathSciNet  Google Scholar 

  38. Pal, N., Samanta, S., Rana, S.: The impact of constant immigration on a tri-trophic food chain model. Int. J. Appl. Comput. Math. 3(4), 3615–3644 (2017)

    Article  MathSciNet  Google Scholar 

  39. Pal, N., Samanta, S., Martcheva, M., Chattopadhyay, J.: Role of bi-directional migration in two similar types of ecosystems. Mathematics 6(3), 36 (2018)

    Article  Google Scholar 

Download references


Authors are thankful to the learned reviewers for their useful comments and suggestions, which help us to improve the manuscript. Research work of Sk Shahid Nadim is supported by the Senior Research Fellowship from the CSIR, Government of India.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joydev Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadim, S.S., Samanta, S., Pal, N. et al. Impact of Predator Signals on the Stability of a Predator–Prey System: A Z-Control Approach. Differ Equ Dyn Syst 30, 451–467 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI: