Skip to main content
Log in

Coupled System of Second-Order Stochastic Neutral Differential Inclusions Driven by Wiener Process and Poisson Jumps

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we prove the existence of mild solutions for a second-order impulsive semilinear stochastic differential inclusion with an infinite-dimensional standard cylindrical Wiener process and Poisson jumps. We consider non convex-valued cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N.U.: Nonlinear stochastic differential inclusions on Banach space. Stoch. Anal. Appl. 12, 1–10 (1994)

    Article  MathSciNet  Google Scholar 

  2. Balasubramaniam, P., Ntouyas, S.K., Vinayagam, D.: Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space. J. Math. Anal. Appl. 305, 438–451 (2005)

    Article  MathSciNet  Google Scholar 

  3. Balasubramaniam, P.: Existence of solutions of functional stochastic differential inclusions. Tamkang J. Math. 33(1), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  4. Dugundji, J., Granas, A.: Fixed Point Theory. Springer, New York (2003)

    MATH  Google Scholar 

  5. Henriquez, H.R.: Existence of solutions of nonautonomous second order functional differential equations with infinite delay. Nonlinear Anal. Theory Methods 74, 3333–3352 (2011)

    Article  MathSciNet  Google Scholar 

  6. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)

    Book  Google Scholar 

  7. Deimling, K.: Multi-valued Differential Equations. De Gruyter, Berlin (1992)

    Book  Google Scholar 

  8. Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 13, 781–786 (1965)

    MathSciNet  MATH  Google Scholar 

  9. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  11. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  12. Gikhman, I.I., Skorokhod, A.: Stochastic Differential Equations. Springer, Berlin (1972)

    Book  Google Scholar 

  13. Sobczyk, H.: Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic Publishers, London (1991)

    MATH  Google Scholar 

  14. Tsokos, C.P., Padgett, W.J.: Random Integral Equations with Applications to Life Sciences and Engineering. Academic Press, New York (1974)

    MATH  Google Scholar 

  15. Bharucha-Reid, A.T.: Random Integral Equations. Academic Press, New York (1972)

    MATH  Google Scholar 

  16. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  17. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 4th edn. Springer, Berlin (1995)

    Book  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, vol. 293. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  19. Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Xu, Y., Pei, B., Guo, G.: Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise. Appl. Math. Comput. 263, 398–409 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Mueller, C.: The heat equation with Lévy noise. Stoch. Process. Appl. 74, 67–82 (1998)

    Article  Google Scholar 

  24. Hausenblas, E.: Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure. Electron. J. Probab. 10, 1496–1546 (2005) (electronic)

  25. Kallianpur, G., Xiong, J.: A nuclear space-valued stochastic differential equation driven by Poisson random measures. In: Stochastic Partial Differential Equations and Their Applications. Lecture Notes in Control and Information Sciences, vol. 176, pp. 135–143. Springer, Berlin (1987)

  26. Albeverio, S., Wu, J., Zhang, T.: Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl. 74, 21–36 (1998)

    Article  MathSciNet  Google Scholar 

  27. Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theory Relat. Fields. 123(2), 157–201 (2002)

    Article  MathSciNet  Google Scholar 

  28. Blouhi, T., Nieto, J., Ouahab, A.: Existence and uniqueness results for systems of impulsive stochastic differential equations. Ukr. Math. J. (2016) (to appear)

  29. Blouhi, T., Caraballo, T., Ouahab, A.: Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion. Stoch. Anal. Appl. 34(5), 792–834 (2016)

    Article  MathSciNet  Google Scholar 

  30. Taniguchi, T.: The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps. Stochastics 82, 339–363 (2010)

    Article  MathSciNet  Google Scholar 

  31. Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin (1992)

    Book  Google Scholar 

  32. Ouahab, A.: Some Perov’s and Karsnosel’skii type fixed point results and application. Commun. Appl. Anal. 19, 623–642 (2015)

    Google Scholar 

  33. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces, vol. 108. Elsevier, Amsterdam (2011)

    Google Scholar 

  34. Heikkila, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  35. Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. In: Lecture Notes in Mathematics, vol. 580, Springer (2006)

  36. Górniewicz, L.: Topological fixed point theory of multi-valued mappings. In: Mathematics and Its Applications, vol. 495. Kluwer Academic Publishers, Dordrecht (1999)

Download references

Acknowledgements

The authors would like to thank very much the anonymous referees for their careful reading and valuable comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ferhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blouhi, T., Ferhat, M. Coupled System of Second-Order Stochastic Neutral Differential Inclusions Driven by Wiener Process and Poisson Jumps. Differ Equ Dyn Syst 30, 1011–1025 (2022). https://doi.org/10.1007/s12591-018-00450-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-00450-y

Keywords

Mathematics Subject Classification

Navigation