Skip to main content
Log in

\(\varepsilon \)-Uniform Numerical Technique for the Class of Time Dependent Singularly Perturbed Parabolic Problems With State Dependent Retarded Argument Arising from Generalised Stein’s Model of Neuronal Variability

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The motive of the present work is to develop a parameter robust numerical scheme for the class of problems involving singularly perturbed parabolic differential-difference equations with delay, which often arise in computational neuroscience. The numerical schemes developed prior to this work are restricted either to the case of small values of delay argument or linear convergence with restriction on the mesh generation. In practice, the delay argument can be of arbitrary size. Parameter \(\varepsilon \) may take small enough values e.g., viscosity coefficient in Navier–Stokes equation for fluids with high Reynolds number. It is required to construct a higher order parameter robust numerical scheme without any restriction on the mesh generation for singularly perturbed parabolic differential-difference equations with state dependent delay of arbitrary size. A new class of non-standard finite difference method based on interpolation, \(\theta \)-method and Micken’s techniques is constructed to approximate the solution of singularly perturbed parabolic differential-difference equations with arbitrary values of delay. It is shown that proposed numerical scheme is parameter uniform convergent. It is proved that this method is unconditionally stable and is convergent for \(\frac{1}{2} \le \theta \le 1,\) without having any restriction on the mesh. Some numerical experiments are provided to illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ansari, A.R., Bakr, S., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205(1), 552–566 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, K., Sharma, K.K.: Parameter-robust numerical scheme for time dependent singularly perturbed reaction-diffusion problem with large delay. Numerical Functional Analysis and Optimization (2016) (Accepted)

  3. Bansal, K., Sharma, K.K.: Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments. Numerical Algorithms 75(1), 113–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, K., Rai, P., Sharma, K.K.: Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. Differ. Equ. Dyn. Syst. 25(2), 327–346 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clavero, C., Gracia, J.L.: A high order hodie finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems. Appl. Math. Comput. 218(9), 5067–5080 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Clavero, C., Gracia, J.L.: An improved uniformly convergent scheme in space for 1D parabolic reaction-diffusion systems. Appl. Math. Comput. 243, 57–73 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Clavero, C., Jorge, J.C., Lisbona, F.J.: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math. 154(2), 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clavero, C., Gracia, J.L., Jorge, J.C.: High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differ. Equ. 21(1), 149–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clavero, C., Gracia, J.L., Stynes, M.: A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems. J. Comput. Appl. Math. 235(17), 5240–5248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cope, D.K., Tuckwell, H.C.: Firing rates of neurons with random excitation and inhibition. J. Theor. Biol. 80(1), 1–14 (1979)

    Article  MathSciNet  Google Scholar 

  11. Gowrisankar, S., Natesan, S.: A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems on equidistributed grids. Electron. Trans. Numer. Anal. 41, 376–395 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Gracia, J.L., O’Riordan, E., Pickett, M.L.: A parameter robust second order numerical method for a singularly perturbed two-parameter problem. Appl. Numer. Math. 56(7), 962–980 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kadalbajoo, M.K., Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDEs. Appl. Math. Comput. 182(1), 119–139 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Kaushik, A.: Error estimates for a class of partial functional differential equation with small dissipation. Appl. Math. Comput. 226, 250–257 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Kaushik, A., Sharma, K.K., Sharma, M.: A parameter uniform difference scheme for parabolic partial differential equation with a retarded argument. Appl. Math. Model. 34(12), 4232–4242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar, D., Kadalbajoo, M.K.: A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model. 35(6), 2805–2819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, M., Rao, S.C.S.: High order parameter-robust numerical method for time dependent singularly perturbed reaction-diffusion problems. Computing 90(1), 15–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ladyz̆enskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)

    Google Scholar 

  19. Lánskỳ, P.: On approximations of Stein’s neuronal model. J. Theor. Biol. 107(4), 631–647 (1984)

    Article  Google Scholar 

  20. Lánskỳ, P., Musila, M.: Variable initial depolarization in Stein’s neuronal model with synaptic reversal potentials. Biol. Cybern. 64(4), 285–291 (1991)

    Article  Google Scholar 

  21. Lánskỳ, P., Smith, C.E.: The effect of a random initial value in neural first-passage-time models. Math. Biosci. 93(2), 191–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Linß, T., Madden, N.: Analysis of an alternating direction method applied to singularly perturbed reaction-diffusion problems. Int. J. Numer. Anal. Model. 7(3), 507–519 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  24. Musila, M., Lánskỳ, P.: Generalized Stein’s model for anatomically complex neurons. BioSystems 25(3), 179–191 (1991)

    Article  Google Scholar 

  25. Ng-Stynes, M.J., O’Riordan, E., Stynes, M.: Numerical methods for time-dependent convection-diffusion equations. J. Comput. Appl. Math. 21(3), 289–310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ramesh, V.P., Kadalbajoo, M.K.: Upwind and midpoint upwind difference methods for time-dependent differential-difference equations with layer behavior. Appl. Math. Comput. 202(2), 453–471 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Rathish Kumar, B.V., Kumar, S.: Convergence of three-step Taylor galerkin finite element scheme based monotone schwarz iterative method for singularly perturbed differential-difference equation. Numerical Functional Analysis and Optimization 36(8), 1029–1045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, vol. 24. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  29. Selvi, P.A., Ramanujam, N.: A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with robin type boundary condition. Appl. Math. Comput. 296, 101–115 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Smith, C.E., Smith, M.V.: Moments of voltage trajectories for Stein’s model with synaptic reversal potentials. J. Theor. Neurobiol. 3, 67–77 (1984)

    Google Scholar 

  31. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5(2), 173–194 (1965)

    Article  Google Scholar 

  32. Stein, R.B.: Some models of neuronal variability. Biophys. J. 7(1), 37–68 (1967)

    Article  Google Scholar 

  33. Tuckwell, H.C.: Firing rates of motoneurons with strong random synaptic excitation. Biol. Cybern. 24(3), 147–152 (1976)

    Article  MATH  Google Scholar 

  34. Tuckwell, H.C., Richter, W.: Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters. J. Theor. Biol. 71(2), 167–183 (1978)

    Article  Google Scholar 

  35. Wilbur, W.J., Rinzel, J.: An analysis of Stein’s model for stochastic neuronal excitation. Biol. Cybern. 45(2), 107–114 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wilbur, W.J., Rinzel, J.: A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J. Theor. Biol. 105(2), 345–368 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The research work of first author is supported by U.G.C. (Letter no. F.17-7(J)/08(SA-1) dated 01-Feb-2012) New Delhi, India. The authors express their sincere thanks to Prof. Relja Vulanović, Professor and Coordinator of Mathematics, Department of Mathematical Sciences, Kent State University at Stark, North Canton, Ohio 44720, U.S.A., for his valuable contribution in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, K., Sharma, K.K. \(\varepsilon \)-Uniform Numerical Technique for the Class of Time Dependent Singularly Perturbed Parabolic Problems With State Dependent Retarded Argument Arising from Generalised Stein’s Model of Neuronal Variability. Differ Equ Dyn Syst 27, 113–140 (2019). https://doi.org/10.1007/s12591-017-0390-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0390-6

Keywords

Mathematics Subject Classification

Navigation