Advertisement

Differential Equations and Dynamical Systems

, Volume 26, Issue 1–3, pp 265–277 | Cite as

A Novel Fractional Microbial Batch Culture Process and Parameter Identification

  • Pan Mu
  • Lei WangEmail author
  • Yi An
  • Yanping Ma
Original Research
  • 141 Downloads

Abstract

This paper considers the microbial batch culture for producing 1,3-propanediol(1,3-PD) via glycerol disproportionation. Due to the nature of the fractional order operations, a novel fractional order model, which is based upon the original ordinary differential dynamic system, is introduced to describe the complex bioprocess in a more accurate manner. Existence and uniqueness of solutions to the novel fractional order system and the continuity of solutions with respect to the parameters are discussed respectively. In addition, a parameter identification problem of the system is presented, and a particle swarm optimization algorithm is constructed to solve it. Finally, the conclusion is drawn by numerical simulations.

Keywords

Fractional order model Microbial batch culture Parameter identification PSO algorithm 

Mathematics Subject Classification

34A08 34K37 35Q92 92B05 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation for the Youth of China (Grant No. 11401073), and the Fundamental Research Funds for Central Universities in China (Grant DUT15LK25).

References

  1. 1.
    Liouville, J.: Mmoire sur quelques questions de gomtrie et de mcanique, et sur un nouveau genre de calcul pour rsoudre ces questions, pp. 1-69. (1832)Google Scholar
  2. 2.
    Letnikov, A.V.: Theory of differentiation with an arbitrary index. Math. Sb 3, 1–66 (1868)Google Scholar
  3. 3.
    Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. I. Math. Z. 34(1), 565–606 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. II. Math. Z. 34(1), 403–439 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 13(5), 529–539 (1967)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus. Springer, Dordrecht (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Assaleh, K., Ahmad, W.M.: Modeling of speech signals using fractional calculus, In: Signal Processing and Its Applications, ISSPA. 9th International Symposium on IEEE, pp. 1–4 (2007)Google Scholar
  11. 11.
    Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)CrossRefGoogle Scholar
  12. 12.
    Magin, R.L.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(1), 1431–1442 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)Google Scholar
  14. 14.
    Surez, J.I., Vinagre, B.M., Caldern, A.J., et al.: Using fractional calculus for lateral and longitudinal control of autonomous vehicles. Comput. Aided Syst. Theory EUROCAST 2003 2809, 337–348 (2003)CrossRefGoogle Scholar
  15. 15.
    Toledo-Hernandez, R., Rico-Ramirez, V., Iglesias-Silva, G.A., et al.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117(1), 217C228 (2014)Google Scholar
  16. 16.
    Zeng, A.P., Ross, A., Biebl, H., et al.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44(8), 902–911 (1994)CrossRefGoogle Scholar
  17. 17.
    Zeng, A.P., Biebl, H.: Chemicals from Biotechnology: The Case of 1,3-Propanediol Production and the New Trends, Tools and Applications of Biochemical Engineering Science, 74th edn. Springer, Berlin Heidelberg (2002)Google Scholar
  18. 18.
    Gong, Z., Liu, C., Feng, E., et al.: Research article: computational method for inferring objective function of glycerol metabolism in Klebsiella pneumoniae. Comput. Biol. Chem. 33(1), 1–6 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Yuan, J., Zhang, X., Zhu, X., et al.: Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2088–2103 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yuan, J., Zhang, X., Zhu, X., et al.: Pathway identification using parallel optimization for a nonlinear hybrid system in batch culture. Nonlinear Anal. Hybrid Syst. 15, 112–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yuan, J., Zhang, X., Zhu, X., et al.: Identification and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch culture. Comput. Appl. Math. 34(3), 957–978 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yin, H., Yuan, J., Zhang, X., et al.: Modeling and parameter identification for a nonlinear multi-stage system for dha regulon in batch culture. Appl. Math. Model. 40(1), 468–484 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, X.H., Feng, E.M., Xiu, Z.L.: Optimal control and property of nonlinear dynamic system for microorganism in batch culture. OR Trans. 9(4), 67–79 (2005)Google Scholar
  24. 24.
    Gao, C., Feng, E., Wang, Z., et al.: Parameters identification problem of the nonlinear dynamical system in microbial continuous cultures. Appl. Math. Comput. 169(1), 476–484 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Xiu, Z., Zeng, A., An, L.: Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1, 3-propanediol. J. Dali. Univ. Technol. 40(4), 428–433 (2000)Google Scholar
  26. 26.
    Wang, L.: Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioprocess Biosyst. Eng. 36(4), 433–441 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, L., Ye, J., Feng, E., et al.: An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification. Nonlinear Anal. Hybrid Syst. 3(4), 455–462 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, L., Feng, E.: An improved nonlinear multistage switch system of microbial fermentation process in fed-batch culture. J. Syst. Sci. Complex. 28(3), 580–591 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, L., Xiu, Z., Gong, Z., et al.: Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture. Int. J. Biomath. 5(4), 1250034 (2012). doi: 10.1142/S179352451100174X MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)zbMATHGoogle Scholar
  31. 31.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Amsterdam (2006)zbMATHGoogle Scholar
  32. 32.
    Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2004)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)CrossRefGoogle Scholar
  34. 34.
    Zhou, Y., Wang, J., Zhang, L.: Basic theory of fractional differential equations. World Scientific (2016)Google Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of Control Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.Department of MathematicsLoyola Marymount UniversityLos AngelesUSA

Personalised recommendations