Skip to main content
Log in

Particular Solution of Linear Sequential Fractional Differential equation with Constant Coefficients by Inverse Fractional Differential Operators

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper adopts the inverse fractional differential operator method for obtaining the explicit particular solution to a linear sequential fractional differential equation, involving Jumarie’s modification of Riemann–Liouville derivative, with constant coefficient s. This method depends on the classical inverse differential operator method and it is independent of the integral transforms. Several examples are then given to demonstrate the validity of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., N’Guerekata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary Value Problems for Fractional Differential Equations. Georgian Math. J. 16, 401–411 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Regan, D.O., Stanek, S.: Positive Solutions for Dirichlet Problem of Singular Nonlinear Fractional Differential Equations. J. Math. Anal. Appl. 371, 57–68 (2010)

    Article  MathSciNet  Google Scholar 

  4. Agarwal, R.P., Zhou, Y., Wang, J., Luo, X.: Fractional Functional Differential Equations with Causal Operators in Banach Spaces. Math. Comput. Model. 54, 1440–1452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arshad, S., Lupulescu, V.: On the Fractional Differential Equations with Uncertainty. Nonlinear Anal. 74, 3685–3693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York (2012)

    Book  MATH  Google Scholar 

  7. Caputo, M., Linear Models of Dissipation Whose Q is Almost Frequency Independent II. Geophys. J. 13(5), 529–539 (1967) (reprinted in Fract. Calc. Appl. Anal. 11, 4–14 (2008))

  8. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Analysis of Fractional Differential Equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, New York (1999)

    Google Scholar 

  11. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equations 199, 211–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eshaghi, J., Adibi, H., Kazem, S.: Solution of nonlinear Weakly Singular Volterra Integral Equations using the Fractional-Order Legendre Functions and Pseudospectral Method. Math. Methods Appl. Sci. 39(12), 3411–3425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaul, L., Klein, P., Kempfle, S.: Damping Description Involving Fractional Operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  14. Glockle, W.G., Nonnenmacher, T.F.: A Fractional Calculus Approach of Self-Similar Protein Dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  15. He, J.-H., Elagan, S.K., Li, Z.B.: Geometrical Explanation of the Fractional Complex Transform and Derivative Chain Rule For Fractional Calculus. Phys. Lett. A 376, 257–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jankowski, T.: Initial Value Problems for Neutral Fractional Differential Equations Involving a Riemann-Liouville derivative. Appl. Math. Comput. 219, 7772–7776 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, Y., Ding, X.: Waveform Relaxation Methods for Fractional Differential Equations with the Caputo Derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, W.: Eigenvalue Interval for Multi-Point Boundary Value Problems of Fractional Differential Equations. Appl. Math. Comput. 219, 4570–4575 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Jumarie, G.: Stochastic Differential Equations with Fractional Brownian Motion Input. Int. J. Syst. Sci. 6, 1113–1132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jumarie, G.: Lagrange Characteristic Method for Solving a Class of Nonlinear Partial Differential Equations of Fractional Order. Appl. Math. Lett. 19, 873–880 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jumarie, G.: Lagrangian Mechanics of Fractional Order. Hamilton-Jacobi Fractional PDE and Taylor’s Series of Nondifferentiable Functions. Chaos Solitons Fractals 32, 969–987 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jumarie, G.: Table of Some Basic Fractional Calculus Formulae Derived from a Modified Riemann-Liouville Derivative for Non-Differentiable Functions. Appl. Math. Lett. 22, 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jumarie, G.: Cauchy’s Integral Formula via the Modified Riemann–liouville Derivative for Analytic Functions of Fractional Order. Appl. Math. Lett. 23, 1444–1450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khudair, A.R.: On Solving Non-homogeneous Fractional Differential Equations of Euler Type. Comput. Appl. Math. 32(3), 577–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazem, S.: Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. Int. J. Nonlinear Sci. 16(1), 3–11

  26. Kazem, S.: An Integral Operational Matrix Based on Jacobi Polynomials for Solving Fractional-order Differential Equations. Appl. Math. Model. 37 (3), 1126–1136

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, London (2006)

  28. Li, N., Wang, C.: New Existence Results of Positive Solution for a Class of Nonlinear Fractional Differential Equations. Acta Math. Sci. 33B(3), 847–854 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Z., Li, X.: Existence and Uniqueness of Solutions for the Nonlinear Impulsive Fractional Differential Equations. Commun. Nonlinear Sci. Numer. Simul. 18, 1362–1373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Magin, R.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  31. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in Filled Polymers: A Fractional Calculus Approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  32. Mophou, G.M.: Existence and Uniqueness of Mild Solutions to Impulsive Fractional Differential Equations. Nonlinear Anal. Theory Methods Appl. 72, 1604–1615 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, New York (1999)

  35. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advance Fractional Calculus. Springer, New York (2007)

  36. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals And Derivatives: Theory and Applications. Gordon and Breach science publishers, Philadelphia (1993)

  37. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-order Signal Processing. Techniques and Applications. Springer, London (2011)

    MATH  Google Scholar 

  38. Vong, S.W.: Positive Solutions of Singular Fractional Differential Equations with Integral Boundary Conditions. Math. Comput. Model. 57, 1053–1059 (2013)

    Article  MathSciNet  Google Scholar 

  39. Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  40. Zhai, C., Yan, W., Yang, C.: A Sum Operator Method for the Existence And Uniqueness of Positive Solutions To Riemann–liouville Fractional Differential Equation Boundary Value Problems. Commun. Nonlinear Sci. Numer. Simul. 18, 858–866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad R. Khudair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, S.L., Khudair, A.R. Particular Solution of Linear Sequential Fractional Differential equation with Constant Coefficients by Inverse Fractional Differential Operators. Differ Equ Dyn Syst 25, 373–383 (2017). https://doi.org/10.1007/s12591-017-0364-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0364-8

Keywords

Navigation