Skip to main content
Log in

Well-Posedness for a System of Integro-Differential Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We give sufficient conditions for the existence, the uniqueness and the continuous dependence on initial data of the solution to a system of integro-differential equations with superlinear growth on the nonlinear term. As possible applications of our methods we consider two epidemic models: a perturbed versions of the well-known integro-differential Kendall SIR model, and a SIRS-like model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. From condition (14) with \(C=\sigma -\rho /2\).

  2. From condition (16) with \(C= 2(\sigma -\rho /2)\).

References

  1. Ai, S., Albashaireh, R.: Traveling waves in spatial SIRS models. J. Dyn. Differ. Equ. 26(1), 143–164 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aronson D.G.: The asymptotic speed of propagation of a simple epidemic. Nonlinear diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, Tex., 1976), pp. 1–23. Res. Notes Math., no. 14, Pitman, London (1977)

  3. Atkinson, C., Reuter, G.E.H.: Deterministic epidemic waves. Math. Proc. Camb. Philos. Soc. 80(2), 315–330 (1976)

    Article  MathSciNet  Google Scholar 

  4. Benedetti, I., Bisconti, L.: A note on the behavior and the asymptotic speed of propagation of traveling wave solutions to a spatial SIR epidemic model (submitted)

  5. Benedetti, I., Malaguti, L., Taddei, V.: Semilinear evolution equations in abstract spaces and applications. Rendiconti dell’Istituto di Matematica dell’Universita di Trieste 44(1), 371–388 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Benedetti, I., Malaguti, L., Taddei, V.: Nonlocal semilinear evolution equations without strong compactness: theory and applications. Bound. Value Probl. 2013(60), 18 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Benedetti, I., Loi, N.V., Malaguti, L.: Nonlocal problems for differential inclusions in Hilbert spaces. Set Valued Var. Anal. 22, 639–656 (2014)

    Article  MathSciNet  Google Scholar 

  8. Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.V.: An approximation solvability method for nonlocal differential problems in Hilbert spaces. Commun. Contemp. Math. 19(2), 1–34 (2017)

  9. Bisconti, L., Spadini, M.: On a class of differential-algebraic equations with infinite delay. Electron. J. Qual. Theory Differ. Equ. 81, 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bisconti, L., Spadini, M.: Corrigendum to On a class of differential-algebraic equations with infinite delay. Electron. J. Qual. Theory Differ. Equ. 97, 1–5 (2012)

    MATH  Google Scholar 

  11. Bisconti, L., Spadini, M.: Harmonic perturbations with delay of periodic separated variables differential equations. Topol. Methods Nonlinear Anal. 46(1), 261–281 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bisconti, L., Spadini, M.: Sunflower model: time-dependent coefficients and topology of the periodic solutions set. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1573–1590 (2015)

    Article  MathSciNet  Google Scholar 

  13. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40, 2nd edn. Springer, New York (2012)

    Book  Google Scholar 

  14. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. R. Soc. Edinb. Ser. A 137, 727–755 (2007)

    Article  MathSciNet  Google Scholar 

  16. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation. J. Differ. Equ. 33, 58–73 (1979)

    Article  MathSciNet  Google Scholar 

  17. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

    Book  Google Scholar 

  18. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  19. Kendall, D.G.: Mathematical models of the spread of infections. Mathematics and Computer Science in Biology and Medicine, Medical research Council (1965)

  20. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 115(772), 700 (1927)

  21. Garnier, J.: Accelereting solutions in integro-differential equations. SIAM J. Math. Anal. 43(4), 1955–1974 (2011)

    Article  MathSciNet  Google Scholar 

  22. Li, T., Li, Y., Hethcote, H.W.: Periodic traveling waves in SIRS endemic models. Math. Comput. Model. 49(1–2), 393–401 (2009)

    Article  MathSciNet  Google Scholar 

  23. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38(C), 1–93 (2002)

    Google Scholar 

  24. Mariano, P.M.: Mechanics of material mutations. Adv. Appl. Mech. 47(C), 1–91 (2014)

    Google Scholar 

  25. Medlock, J., Kot, M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184, 201–222 (2003)

    Article  MathSciNet  Google Scholar 

  26. Mollison, D.: The rate of spatial propagation of simple epidemics. In: Proc. 6th Berkeley Symp. on Math. Statist. and Prob., vol. 3, University of California Press, Berkeley (1972)

  27. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  28. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics, vol. 57. Springer, New York (2011)

    Book  Google Scholar 

  29. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  Google Scholar 

  30. Yagisita, H.: Existence and nonexistence of travelling waves for a nonlocal monostable equation. Publ. RIMS Kyoto Univ. 45, 925–953 (2009)

    Article  MathSciNet  Google Scholar 

  31. Zhao, X.Q.: Spatial dynamics of some evolution systems in biology. In: Du, Y., Ishii, H., Lin, W.Y. (eds.) Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, pp. 332–363. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  32. Zhou, J., Yang, Y.: Traveling waves for a nonlocal dispersal sir model with general nonlinear incidence rate and spatio-temporal delay. Discret. Contin. Dyn. Syst. Ser. B 22(4), 1719–1741 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of INdAM and GNAMPA. The paper was partially supported by the projects GNAMPA 2015 “Applicazioni di metodi topologici allo studio di problemi differenziali finalizzati all’analisi di modelli di fenomeni reali ” and “Dinamiche non autonome, sistemi hamiltoniani e teoria del controllo”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Benedetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, I., Bisconti, L. Well-Posedness for a System of Integro-Differential Equations. Differ Equ Dyn Syst 28, 999–1013 (2020). https://doi.org/10.1007/s12591-017-0359-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0359-5

Keywords

Mathematics Subject Classification

Navigation