Skip to main content
Log in

The Filippov Approach for Predator-Prey System Involving Mixed Type of Functional Responses

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a Filippov type model is proposed for the predator-prey system. The smooth subsystems of the proposed model admit regular and virtual equilibrium points and their dynamics is explored. The tangent points, boundary equilibrium and pseudo-equilibrium are obtained on discontinuity boundary. Equation of sliding motion is obtained using the Filippov’s convex method and sliding mode dynamics is discussed. It has been shown that the Filippov system admits pseudo-equilibrium, only if virtual equilibrium of two subsystems coexist. The value of threshold parameter is computed for which tangent point and boundary equilibrium collide. The two parameter bifurcation diagram is drawn to show the existence of regular and virtual equilibrium points in different regions. The existence of boundary equilibrium bifurcation is investigated through numerical simulation, as value of threshold parameter varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajraldi, V., Venturino, E.: Stabilizing effect of prey competition for predators exhibiting switching feeding behavior. WSEAS Trans. Biol. Biomed. 5, 65–74 (2008)

    Google Scholar 

  2. Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer-Verlag, London (2008)

  3. Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Chen, X., Huang, L.: A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model. J. Math. Anal. Appl. 428(2), 817–837 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Danca, M.F.: On the uniqueness of solutions to a class of discontinuous dynamical systems. Nonlinear Anal. Real World Appl. 11(3), 1402–1412 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Dercole, F., Gragnani, A., Rinaldi, S.: Bifurcation analysis of piecewise smooth ecological models. Theor. Popul. Biol. 72(2), 197–213 (2007)

    MATH  Google Scholar 

  7. Dieci, L., Lopez, L.: Sliding motion in Filippov differential systems: theoretical results and a computational approach. SIAM J. Numer. Anal. 47(3), 2023–2051 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    MATH  Google Scholar 

  9. Gakkhar, S., Naji, R.K.: Order and chaos in a food web consisting of a predator and two independent preys. Commun. Nonlinear Sci. Numer. Simul. 10(2), 105–120 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Huang, Y., Chen, F., Zhong, L.: Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182(1), 672–683 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Khan, Q.J.A., Balakrishnan, E., Wake, G.C.: Analysis of a predator-prey system with predator switching. Bull. Math. Biol. 66(1), 109–123 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(8), 2157–2188 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer-Verlag, Berlin (2004)

  14. Lv, Y., Yuan, R., Pei, Y.: Two types of predator-prey models with harvesting: non-smooth and non-continuous. J. Comput. Appl. Math. 250, 122–142 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Naji, R.K., Shalan, R.N.: The dynamics of holling type IV prey predator model with intra-specific competition. Iraqi J. Sci. 54(2), 386–396 (2013)

    Google Scholar 

  16. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, New York (1991)

    MATH  Google Scholar 

  17. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21(6), 811–833 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Google Scholar 

  19. Tang, S., Tang, G., Qin, W.: Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy. Int. J. Bifurc. Chaos 24(10), 1450122 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80(1–2), 177–196 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Utkin, V.I.: Sliding modes in control and optimization, vol. 116. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  22. Wang, A., Xiao, Y.: Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination. Int. J. Bifurc. Chaos 23(8), 1350144 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Yang, J., Tang, S., Cheke, R.A.: Global stability and sliding bifurcations of a non-smooth Gause predator-prey system. Appl. Math. Comput. 224, 9–20 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Tang, S.: Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl. Math. Comput. 239, 265–284 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, X., Tang, S.: Filippov ratio-dependent prey-predator model with threshold policy control. Abstr. Appl. Anal. 2013, 11 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are thankful to reviewers for their valuable comments and suggestions. The first author (K. Gupta) would like to thank “University Grants Commission (UGC)” for providing Senior Research Fellowship through Grant No. 6405-11-044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Gakkhar, S. The Filippov Approach for Predator-Prey System Involving Mixed Type of Functional Responses. Differ Equ Dyn Syst 28, 273–293 (2020). https://doi.org/10.1007/s12591-016-0322-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0322-x

Keywords

Navigation