Skip to main content
Log in

Existence of Positive Solutions for System of p-Laplacian Fractional Order Boundary Value Problems

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The purpose of this paper is to establish some results on the existence of positive solutions for a system of p-Laplacian fractional order boundary value problem. The main tool is a fixed point theorem of the cone expansion and compression of functional type due to Avery, Henderson and O’Regan. Some examples are also presented to illustrate the availability of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avery, R.I., Henderson, J., O’Regan, D.: Functional compression expansion fixed point theorem. Electron. J. Differ. Equ. 2008(22), 1–12 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, D.R., Avery, R.I.: Fixed point theorem of cone expansion and compression of functional type. J. Differ. Equ. Appl. 8, 1073–1083 (2002)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential. Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  4. Al-Hossain, A.Y.: Eigenvalues for iterative systems of nonlinear Caputo fractional order three point boundary value problems. J. Appl. Math. Comput. (2015). doi:10.1007/s12190-015-0935-1

    Article  MathSciNet  Google Scholar 

  5. Chai, G.: Positive solutions for boundary value problem of fractional differential equation with \(p\)-Laplacian operator. Bound. Value Probl. 2012, 20 (2012)

    Article  MathSciNet  Google Scholar 

  6. Delbosco, D.: Fractional calculus and function spaces. J. Fract. Calc. 6, 45–53 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  Google Scholar 

  8. Han, Z., Lu, H., Sun, S., Yang, D.: Positive solutions to boundary value problems of \(p\)-Laplacian fractional differential equations with a parameter in the boundary conditions. Electron. J. Differ. Equ. 2012(213), 1–14 (2012)

    Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B. V., Amsterdam (2006)

    Google Scholar 

  10. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

  11. Krasnosel’skii, M.A., Zabreiko, P.P.: Geometrical Methods of Nonlinear Analysis. Springer, New York (1984)

    Book  Google Scholar 

  12. Lakshmikanthan, V., Devi, J.: Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 1(14), 38–45 (2008)

    MathSciNet  Google Scholar 

  13. Lakshmikanthan, V.: Theory of fractional differential equations. Nonlinear Anal. TMA 69, 3337–3343 (2008)

    Article  MathSciNet  Google Scholar 

  14. Lu, H., Han, Z., Sun, S.: Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations with \(p\)-Laplacian. Bound. Value Probl. 2014, 26 (2014)

    Article  MathSciNet  Google Scholar 

  15. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  16. Nageswararao, S.: Existence of positive solutions for Riemann-Liouville fractional order three-point boundary value problem. Asian-Eur. J. Math. 8(4), 15 (2015). doi:10.1142/S1793557115500576

    Article  MathSciNet  Google Scholar 

  17. Nageswararao, S.: Multiple positive solutions for a system of Riemann-Liouville fractional order two-point boundary value problems. Panamer. Math. J. 25(1), 66–81 (2015)

    MathSciNet  Google Scholar 

  18. Nageswararao, S.: Existence and multiplicity for a system of fractional higher-order two-point boundary value problem. J. Appl. Math. Comput. 51, 93–107 (2016). doi:10.1007/s12190-015-0893-7

    Article  MathSciNet  Google Scholar 

  19. Nageswararao, S.: Solvability of second order delta-nabla \(p\)-Laplacian \(m\)-point eigenvalue problem on time scales. TWMS J. App. Eng. Math. 5(1), 98–109 (2015)

    MathSciNet  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  21. Sun, J., Zhang, G.: A generalization of the cone expansion and compression fixed point theorem and applications. Nonlinear Anal. 67, 579–586 (2007)

    Article  MathSciNet  Google Scholar 

  22. Sun, Y., Zhang, X.: Existence and nonexistence of positive solutions for fractional order two point boundary value problems. Adv. Difference Equ. 53, 1–11 (2014)

    MathSciNet  Google Scholar 

  23. Yang, C., Yan, J.: Positive solutions for third-order Sturm-Liouville boundary value problems with \(p\)-Laplacian. Comput. Math. Appl. 59(6), 2059–2066 (2010)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Y., Sun, S., Han, Z., Zhang, M.: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217(16), 6950–6958 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thank the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Y. Al-Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hossain, A.Y. Existence of Positive Solutions for System of p-Laplacian Fractional Order Boundary Value Problems. Differ Equ Dyn Syst 27, 539–552 (2019). https://doi.org/10.1007/s12591-016-0275-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0275-0

Keywords

Mathematics Subject Classifications

Navigation